

Same Risk Area Case-study for Kattegat and Øresund

Appendix 1: Marine Invasive Species shortlist— Methodology and results

DTU Aqua report no. 335a-2018By Flemming Thorbjørn Hansen and Asbjørn Christensen

National Institute of Aquatic Resources

Same Risk Area Case-study for Kattegat and Øresund

Appendix 1: Marine Invasive Species shortlist - Methodology and results

DTU Aqua report no. 335a-2018

Flemming Thorbjørn Hansen and Asbjørn Christensen

Title: Same Risk Area Case-study for Kattegat and Øresund. Appendix 1: Marine Invasive

Species shortlist—Methodology and results

Authors: Flemming Thorbjørn Hansen and Asbjørn Christensen

DTU Aqua report no.: 335a-2018

Year: November 2018

Reference: Hansen, F. T. & Christensen, A. (2018). Same Risk Area Case-study for Kattegat and

Øresund. Appendix 1: Marine Invasive Species shortlist—Methodology and results. DTU Aqua report no. 335a-2018. National Institute of Aquatic Resources,

Technical University of Denmark. 22 pp.

Cover: Example from the SRAMM-tool of hydrographic regions identified for *Didemnum*

vexillum based on 3 years larval dispersal simulation.

Copyright: Total or partial reproduction of this publication is authorised provided the source is

acknowledged

Published by: National Institute for Aquatic Resources, Kemitorvet, 2800 Kgs. Lyngby, Denmark

Download: www.aqua.dtu.dk/publications

ISSN: 1395-8216

ISBN: 978-87-7481-255-5

Contents

1	Introduction	4
2	Review of existing Marine Invasive Species lists for the Kattegat and Øresund	
	region	5
2.1	Data availability	5
2.2	Selection criterion	5
3	Biological traits review	7
3.1	Pelagic larvae duration (PLD)	
3.2	Generations per year	7
3.3	Spawning period	
3.4	Temperature tolerance for larvae	10
3.5	Salinity tolerance for larvae	11
3.6	Temperature tolerance for adult life stages	13
3.7	Salinity tolerance for adult life stages	14
3.8	Habitat	17

1 Introduction

This appendix 1 is an appendix to the report "SRA Case Study for Kattegat and Øresund". Section 2 in the appendix describes the methodology and criteria applied for selecting the marine invasive species considered in the case study. Section 3 gives an overview of the various traits represented by the selected species. In general, the quality and quantity of data and information on species life history varies considerable between species and originates from a large variety of sources. The traits presented here should be regarded as a best estimate so far, some of which very likely will be modified in future analysis when new and better data is provided.

Out of a gross list of 84 marine invasive species identified for the Kattegat and Øresund region, 23 species were selected for the case study. The species lists are presented in tables 1 and 2 in the end of the appendix.

2 Review of existing Marine Invasive Species lists for the Kattegat and Øresund region

2.1 Data availability

A number of references exist that compile lists of marine invasive species for the Kattegat and Øresund region, e.g.:

- HELCOM/OSPAR Ballast Water Exemptions Decision support tool¹
- Danish Nature Agency²
- AQUANIS³

While lists on marine invasive species including the Kattegat area are available from both HELCOM and OSPAR commissions for the North Sea and the Baltic Sea respectively, both commissions cover large areas beyond the extent of the Kattegat and Øresund region. As a joint effort, the Ballast Water Exemptions Decision Support Tool is available for querying these lists to extract species potentially subject to ballast water mediated transport, and specifically, a list can be extracted for Kattegat as an overlapping area between the two commissions. This list covering target species for the Kattegat area has been chosen as the primary list for of species for this review and comprise **38 species**.

As a supplement to this list, species that occur on lists produced for the Danish Nature Agency (Jensen 2013) adds another **7 species** (one of these is a group of teleosts comprising unspecified species of goby's.)

In addition, data from the AQUANIS database on aquatic marine invasive and cryptogenic species maintained by Klaipeda University in Lithuania have been included adding another **39 species**. These species were identified by querying the database for species found in the North Sea and Baltic region, associated with "ballast water" or "ballast water tank sediments", and by excluding species, which are purely freshwater species with no salinity tolerance.

Thus, a total number of 84 species were identified for further examination. This gross list is shown in in table 2.

2.2 Selection criterion

Of the 84 species listed in table 2 the species that met at least one of the criteria listed below were not considered for the SRA case study. These criteria include:

- 1. Species with the entire life cycle in the water column
- 2. Species that are already fully established in the Kattegat and Øresund region.
- 3. Species with no or very limited salinity tolerance < 10 PSU.
- 4. Macro algae and macrophytes.

¹ HELCOM/OSPAR Ballast Water Exemptions Decision support tool (http://jointbwmexemptions.org)

² Jensen K 2013 "Selection of target species for risk assessment of danish ports in connection with the international convention for the control and management of ships' ballast water and sediments". Report for the Danish Nature Agency

³ http://www.corpi.ku.lt/databases/index.php/aquanis/

Ad 1) Species with the entire life cycle in the water column (e.g. pelagic copepods, pelagic fish, pelagic phytoplankton, jellyfish etc.) are not expected to be a limiting factor for the extent and delineation of an SRA in Kattegat and Øresund compared to species with short pelagic life stages in the order of days or weeks.

Ad 2) Species already introduced to the Kattegat and Øresund region and considered fully established in all suitable habitats throughout the study area, are not a concern to the BWMC.

Ad 3) Freshwater species and species that do not tolerate salinities above 10 PSU are not expected to sur-vive in Kattegat and Øresund region except in local areas receiving freshwater from major rivers.

Ad 4) Most macro algae and macrophytes have limited (~ few meters) dispersal capability of seeds and spores. Shredded thallus however may drift in many month and over vast distances (>100s of km's). This long distance dispersal of thallus (also referred to as "rafting") is unlikely to be a limiting factor for identify-ing well-connected areas and dispersal barriers in the at Kattegat and Øresund region.

The resulting list comprising 23 species including literature data and/or estimates on biological traits are shown in table 1. The individual traits are reviewed in more detail below.

3 Biological traits review

3.1 Pelagic larvae duration (PLD)

Data on the pelagic larvae durations (PLD) was found in literature and databases for all 23 species representing a large range of values from less than 1 day and up to 120 days, and reported PLD values for each species are typically reported within a given range. While PLD in general is critical to the extent to which species disperse within a region, especially short PLD of hours or a few days will be a limiting factor for single generation dispersal in an area of the size of Kattegat and Øresund (~ 250x150 km's). Approximately 50 % of the species have mean PLDs between 20 and 50 days. Approximately 25 % of the species have a mean PLD of less than or equal to 10 days, three of these have mean PLD's of 1 day or less. Frequencies of reported minimum and maximum PLD values for the 23 species are shown in Figure 1.

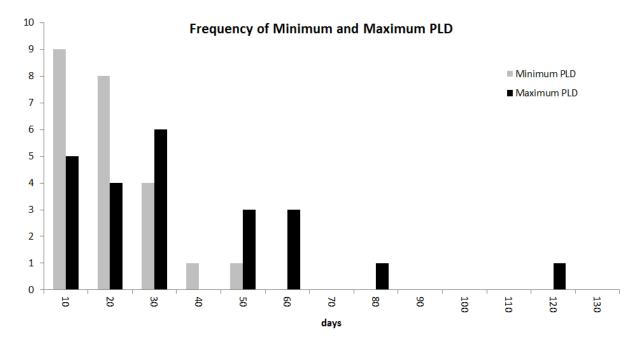
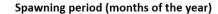


Figure 1. Frequencies of reported minimum and maximum PLD values for the 23 species included in the case study.

3.2 Generations per year

Of the 23 species included in the case study 18 species are described in the literature and databases as having one generation per year (Figure 2). Another 3 species are described as having more than on generation per year. The number of generations per year for these 3 species were estimated based on available information on maturation time (or time to first reproduction), PLD and the expected length of spawning period. The remaining 2 species require 2 years to reach maturity. In the case study the number of generations expected per year is important when trying to evaluate the dispersal potential of a marine invasive species within a given time period, e.g. 5 year corresponding to the exemption period. The more

generations the larger the likelihood that an organisms may disperse to other parts of the region given the availability of required substrate and/or habitat via stepping stone dispersal.


1 2 3 5 4 7 Arcuatula senhousia Asterias amurensis Austrominius modestus Bugula neritina Bugulina simplex Callinectes sapidus Crassostrea gigas Didemnum vexillum Ensis directus Eriocheir sinensis Ficopomatus enigmaticus Hemigrapsus sanguineus Hemigrapsus takanoi Hydroides dianthus Laonome calida Marenzelleria viridis Mytilopsis leucophaeata Mytilus galloprovincialis Palaemon macrodactylus Potamocorbula amurensis Rangia cuneata Rapana venosa Rhithropanopeus harrisii

Generations per year (no.s)

Figure 2. Estimated number of generations per year for the 23 species included in the case study.

3.3 Spawning period

The expected spawning season for each species were estimated based on available information reported from its native range and/or reported from comparable environments in areas outside its native range (Figure 3 and Figure 4). All of the 23 species are expected to spawn in spring, summer and/or autumn seasons. Only 4 species are expected to initiate their spawning in March or April, while 21 of the 23 species are expected to spawn during the month of July. The initiation and duration of spawning seasons for many species are determined by the development in water temperature but this was not considered explicitly in the larval dispersal modelling and connectivity analysis in the current study. For most species the relationship between temperature and the onset and duration of spawning season is unknown.

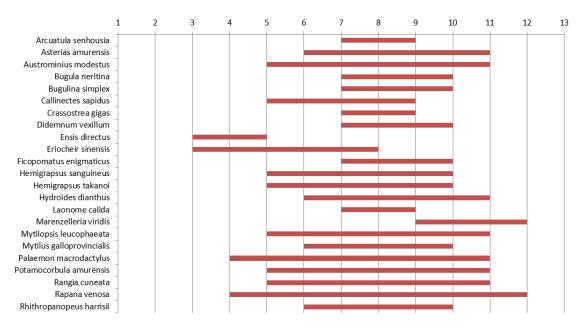


Figure 3. Expected spawning period of the year for the 23 species included in the case study.

Spawning month frequency

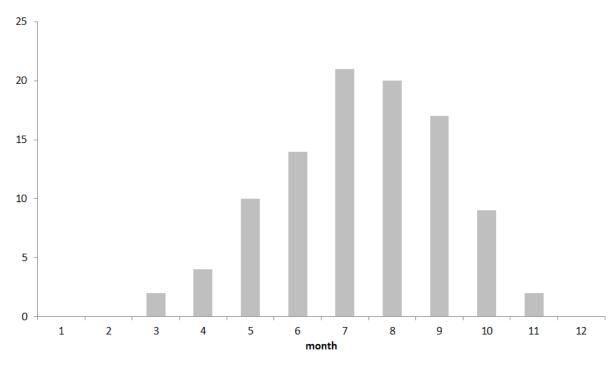


Figure 4. Number of species (out of 23 species included in the case study) expected to spawn each month.

3.4 Temperature tolerance for larvae

Data on larval temperature tolerance was retrieved from available literature and databases. Some data refer explicitly to larval survival tolerance limits, while other data refer to temperature ranges for reproduction, or temperature ranges required by the population as a whole. Because these criteria may not be directly comparable and to various degree relate specifically to larval temperature tolerance, data on temperature tolerance is not used explicitly in the larval dispersal modelling in the case study, but only considered as part of the interpretation of dispersal modeling results and the connectivity analysis.

Of the 23 species, 16 species has a minimum temperature tolerance (or threshold for reproduction) at temperatures of 15 degrees Celsius or less. Another 4 species requires minimum temperatures between 17 and 22.5. No data was found for the remaining 3 species.

Larval temperature tolerance (Ceclsius) 0 5 10 15 20 25 30 35 40 Arcuatula senhousia Asterias amurensis Austrominius modestus Bugula neritina Bugulina simplex Callinectes sapidus Crassostrea gigas Didemnum vexillum Ensis americanus Eriocheir sinensis Ficopomatus enigmaticus Hemigrapsus sanguineus Hemigrapsus takanoi Hydroides dianthus Laonome calida Marenzelleria viridis Mytilopsis leucophaeata Mytilus galloprovincialis Palaemon macrodactylus Potamocorbula amurensis Rangia cuneata Rapana venosa Rhithropanopeus harrisii

Figure 5. Larval temperature tolerance lower limit for the 23 species included in the case study.

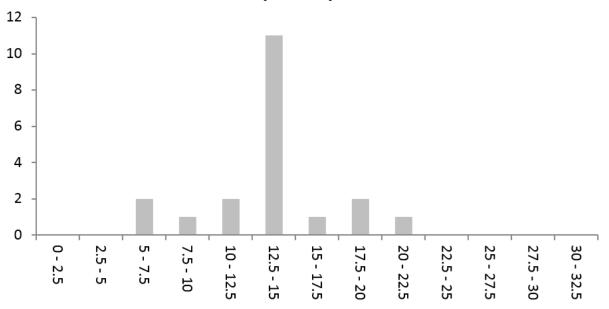


Figure 6. Frequency distribution of minimum larval temperature tolerance for the 23 species included in the case study.

3.5 Salinity tolerance for larvae

Data on larval salinity tolerance for individual species were derived from data expressing the larval tolerance in terms of survival or in terms of minimum and maximum salinities for reproductions. In either case we interpreted these data as the salinity ranges at which larvae can successfully develop through all larval phases and settle onto a suitable substrate. Simulated larvae exposed to salinity outside the salinity tolerance range were excluded from the connectivity analysis.

Of the 23 species the larval stages of 20 species tolerate salinity of 30 PSU or more (Figures 7, 8, and 9). For these species an upper threshold for larval salinity was not included in the connectivity analysis. For 3 species upper salinity thresholds between 20 and 27 PSU were applied. The larval salinity tolerance to lower salinity levels show much more variable tolerances some species tolerating very brackish conditions while other species are more intolerant. The distribution of the lower limits for larval salinity tolerance is approximately randomly distributed between 0 and 30 PSU (Figure 9).

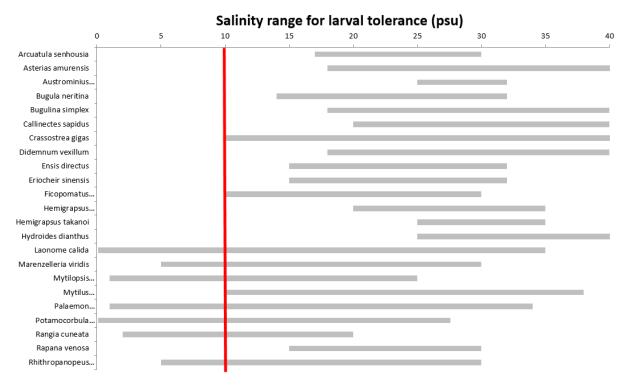


Figure 7. Larval salinity tolerance ranges for the 23 species included in the case study. Red line indicates the approximate lower threshold for salinity range for Kattegat and Øresund.

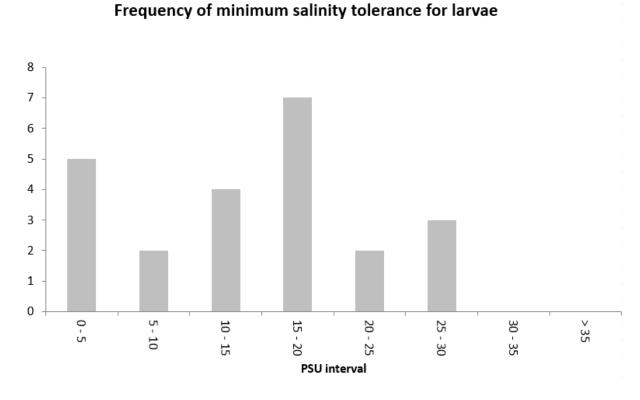


Figure 8. Frequency distribution of minimum larval salinity tolerance for the 23 species included in the case study.

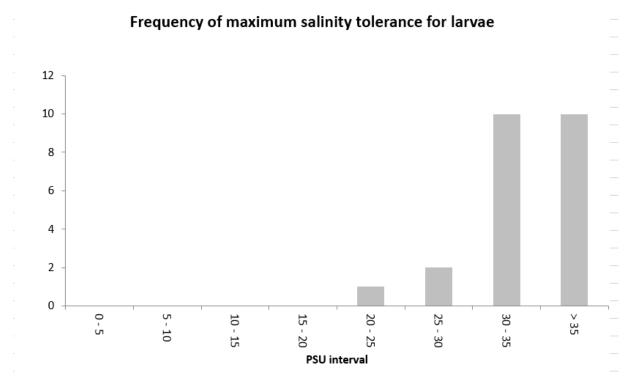


Figure 9. Frequency distribution of maximum larval salinity tolerance for the 23 species included in the case study.

3.6 Temperature tolerance for adult life stages

Data on lower temperature threshold for adult life stages were derived from databases and publication directly or by interpreting the minimum temperature conditions of the species native range or areas where introductions have occurred outside the native ranges. If populations have established in northern Europe minimum tolerance temperature for adult life stages were set to "0" if no specific data could be found. Of the 23 species included in the case study, 9 species were identified to have a minimum temperature tolerance above 0 degrees Celsius with a lower tolerance ranging between 1 and 5 degrees (Figure 10).

Frequency of minimum ADULT temperature tolerance (celcius)

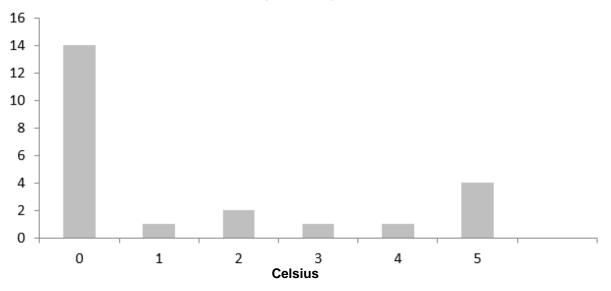


Figure 10. Frequency distribution of minimum temperature tolerance for adult life stages for the 23 species included in the case study.

3.7 Salinity tolerance for adult life stages

Data on known or expected salinity ranges tolerated by adult life stages found for all 23 species is shown in Figure 11. The data was used in the case study to classify the preferred habitat for each species according to whether salinity conditions are considered optimal or sub-optimal (see the main report).

Of the 23 species the adult life stages of 21 species tolerate salinity of 30 PSU or more (Figure 13). Two species require conditions that are more brackish. The salinity tolerance to lower salinity levels show much more variable tolerances some species tolerating very brackish conditions while other species are more intolerant (Figure 12).

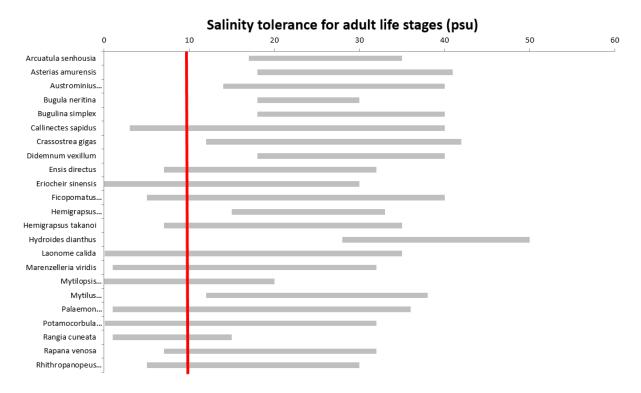


Figure 11. Salinity tolerance ranges of adult life stages for the 23 species included in the case study. Red line indicates the approximate lower threshold for salinity range for Kattegat and Øresund.

Frequency of minimum salinity tolerance for ADULT life stages

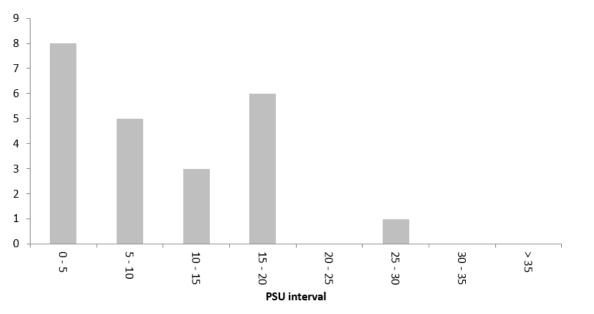


Figure 12. Frequencies of minimum salinity tolerance for adult life stages for the 23 species included in the case study.

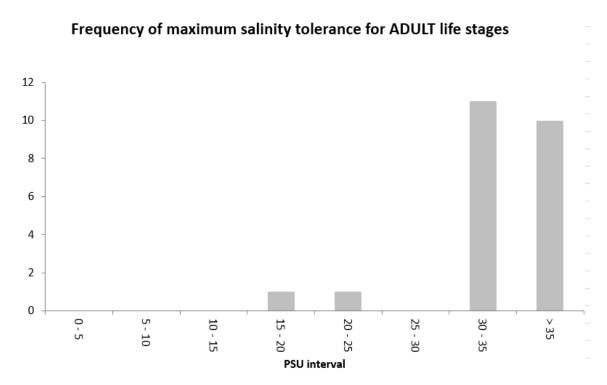


Figure 13. Frequencies of maximum salinity tolerance for adult life stages for the 23 species included in the case study.

3.8 Habitat

The habitat conditions here refer solely to the substrate type required by pelagic stages of a species to successfully settle, grow and eventually mature and produce new offspring. Here we crudely discriminate between "Mud", "Sand" and "Hard" substrates and Vegetation (Figure 14). Data or descriptions of species habitat preferences were found in, or interpreted from, species databases and publications.

Habitat preferences

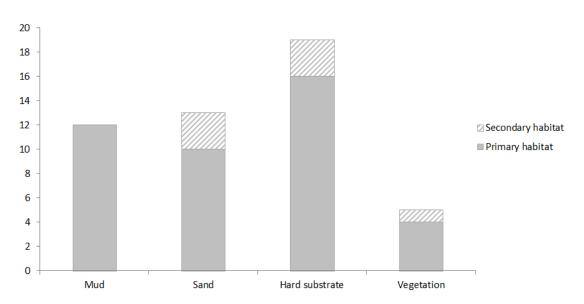


Figure 14. . Frequency distribution habitat preferences for the 23 species included in the case study, discriminating between three substrate classes (mud, sand and hard substrates) and vegetation. Each class is divided into "primary" and "secondary" habitats.

Of the 23 species included in the case study 19 species are associated with hard substrates (stone, rock, concrete, mussel-beds, mixed sediments etc.) while 12 and 13 may be found in muddy and sandy habitats respectively. Only 5 species have been associated with aquatic vegetation such as weed and seagrasses, however this should be evaluated critically. Because species found in rocky or stony, often tidal, habitats, these habitats are also areas where you will often find various types of vegetation. Species that may be associated with hard substrates may also attach and thrive on various types of vegetation surfaces. While substrate types are included explicitly in the larval dispersal modelling and connectivity analysis representing specific habitats, vegetated habitats are not included due to lack of data.

In addition to habitat substrate preferences, information on preferred depth distribution were included (Figure 15). The majority of species are known to have a maximum depth distribution between 0 and 40 meters depth, while only 4 species have a maximum depth distribution of 60 or deeper. Data on preferred maximum depth distribution were found for all species except *Laonome calidda*. Here a presumed maximum depth distribution of 40 meters was assumed.

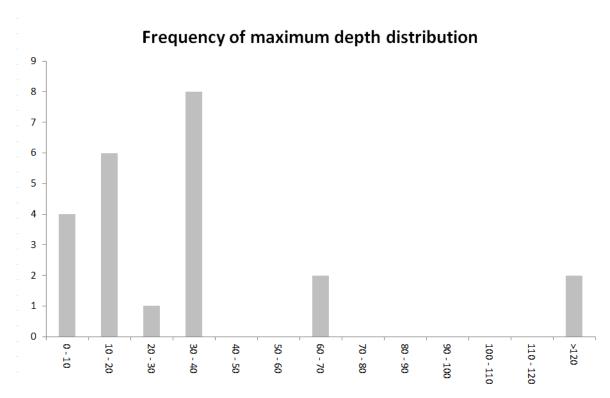


Figure 15. Number of species (out of the 23 species included in the case study) with a maximum depth distribution within each 10 meter depth interval.

Table 1. The table include the 23 selected species for dispersal simulation and connectivity analysis in the case study for Kattegat and Øresund. The presented life history traits and environmental tolerances are retrieved from the literature and/or databases either as explicitly reported values or inferred or estimated from species descriptions and reports. For details on individual parameters, see text. Values followed by a '* ' are based on assumptions where no empirical data or species descriptions could not be found.

SPECIES	Taxon	PLD (min)	PLD (max)	Generations per year	Spawning start	Spawning end	Habitat Substrate	Habitat Depth	Temp. Min (Adult)	Temp. Max (Adult)	Salinity Min (Adult)	Salinity Max (Adult)	Temp. Min (Larvae)	Temp. Max (Larvae)	Salinity Min (Larvae)	Salinity Max (Larvae)
		days	days	no.s	month	month	type	m	С	С	PSU	PSU	С	С	PSU	PSU
Arcuatula senhousia	Mollusca	14	55	1	7	8	All	20	0	33	17	35	22.5	30	17	30
Asterias amurensis	Echinodermata	41	120	1	6	10	All	220	0	25	18	41	17	20	18	41
Austrominius modestus	Crustacea	10	15	1	5	10	Hard	5	0	26	14	40	6	25	25	32
Bugula neritina	Bryozoan	0.5	2	1	7	9	Hard	10	0	25	18	30	12	26	14	32
Bugulina simplex	Bryozoan	1	1	1	7	9	Hard	20	0	25	18	40	?	25	18	40
Callinectes sapidus	Crustacea	31	49	1	5	8	Mud, Sand	36	5	30	3	40	15	25	20	40
Crassostrea gigas	Mollusca	21	28	1	7	8	Hard	15	3	35	12	42	18	26	10	42
Didemnum vexillum	Tunicata	0.5	1	1	7	9	Hard	65	2	28	18	40	14	20	18	40
Ensis directus	Mollusca	14	21	1	3	4	Mud, Sand	12	0	26	7	32	15	28	15	32
Eriocheir sinensis	Crustacea	30	60	0.5	3	7	All	10	0	25	0	30	12	35	15	32
Ficopomatus enigmaticus	Annelida	20	25	1	7	9	hard	10	0	30	5	40	18	26	10	30
Hemigrapsus sanguineus	Crustacea	16	55	1	5	9	Sand, Hard	40	5	30	15	33	15	30	20	35
Hemigrapsus takanoi	Crustacea	30	30	1	5	9	All	20	0	20	7	35	15	30	25	35
Hydroides dianthus	Annelida	5	14	2	6	10	Hard	200	5	30	28	50	?	20	25	50
Laonome calida	Annelida	1	1.5	1*	7*	8*	All	40*	0	30	0.1	35	?	25	0.1	35
Marenzelleria viridis	Annelida	28	49	1	9	11	Mud	65	0	25	1	32	15	25	5	30
Mytilopsis leucophaeata	Mollusca	6	14	1	5	10	Hard	40	5	37	0	20	13	27	1	25
Mytilus galloprovincialis	Mollusca	14	28	1	6	9	Sand, Hard	40	0	31	12	38	15	25	10	38
Palaemon macrodactylus	Crustacea	15	20	6	4	10	All	40	2	26	1	36	15	27	1	34
Potamocorbula amurensis	Mollusca	14	21	2	5	10	All	30	0	30	0.1	32	6.4	23	0.1	27.6
Rangia cuneata	Mollusca	7	7	0.5	5	10	Mud, Sand	15	1	29	1	15	8	30	2	20
Rapana venosa	Mollusca	14	80	1	4	11	All	40	4	27	7	32	13	26	15	30
Rhithropanopeus harrisii	Crustacea	7	43	1	6	9	Hard	37	0	35	5	30	14	27	5	30

Table 2. Long list of 84 marine invasive species subject to ballast water mediated transport and which include species that have already been registered in the Kattegat and Øresund region or species that have not yet been registered but have been identified as potential marine invasive species in the region Kattegat and Øresund. Bold species names with grey background color are species included in the SRA Case Study for Kattegat and Øresund.

	SPECIES NAME	Included in Case Study?	SOURCE
1	Acartia (Acanthacartia) tonsa	No	AQUANIS
2	Alexandrium acatenella	No	HELCOM/OSPAR
3	Ammothea hilgendorfi	No	AQUANIS
4	Amphibalanus improvisus	No	AQUANIS
5	Antithamnionella spirographidis	No	AQUANIS
6	Arcuatula senhousia	Yes	HELCOM/OSPAR
7	Asterias amurensis	Yes	HELCOM/OSPAR
8	Atyaephyra desmaresti	No	AQUANIS
9	Austrominius modestus	Yes	AQUANIS
10	Balanus amphitrite	No	AQUANIS
11	Beroe ovata	No	Jensen 2013
12	Bugula neritina	Yes	AQUANIS
13	Bugulina simplex	Yes	AQUANIS
14	Callinectes sapidus	Yes	HELCOM/OSPAR
15	Caprella mutica	No	HELCOM/OSPAR
16	Cercopagis pengoi	No	HELCOM/OSPAR
17	Chara connivens	No	AQUANIS
18	Chelicorophium curvispinum	No	AQUANIS
19	Codium fragile subsp. fragile	No	AQUANIS
20	Conchoderma auritum	No	AQUANIS
21	Corbicula fluminea	No	HELCOM/OSPAR
22	Coscinodiscus wailesii	No	HELCOM/OSPAR
23	Craspedacusta sowerbii	No	AQUANIS
24	Crassostrea gigas	Yes	HELCOM/OSPAR
25	Crepidula fornicata	No	HELCOM/OSPAR
26	Dasya baillouviana	No	AQUANIS
27	Dasysiphonia japonica	No	AQUANIS
28	Didemnum vexillum	Yes	HELCOM/OSPAR
29	Dikerogammarus villosus	No	HELCOM/OSPAR
30	Dinophysis sacculus	No	HELCOM/OSPAR
31	Dreissena bugensis	No	HELCOM/OSPAR
32	Dreissena polymorpha	No	HELCOM/OSPAR
33	Ensis americanus	Yes	HELCOM/OSPAR
34	Eriocheir sinensis	Yes	Jensen 2013
35	Evadne anonyx	No	AQUANIS
36	Fibrocapsa japonica	No	HELCOM/OSPAR
37	Ficopomatus enigmaticus	Yes	HELCOM/OSPAR

	SPECIES NAME	Included in Case Study?	SOURCE
38	Fucus evanescens	No	AQUANIS
39	Gammarus tigrinus	No	HELCOM/OSPAR
40	Goby species	No	Jensen 2013
41	Gonionemus vertens	No	AQUANIS
42	Gracilaria vermiculophylla	No	HELCOM/OSPAR
43	Grateloupia turuturu	No	HELCOM/OSPAR
44	Hemigrapsus sanguineus	Yes	HELCOM/OSPAR
45	Hemigrapsus takanoi	Yes	HELCOM/OSPAR
46	Hemimysis anomala	No	HELCOM/OSPAR
47	Hydroides dianthus	Yes	HELCOM/OSPAR
48	Hypania invalida	No	AQUANIS
49	laniropsis serricaudis	No	AQUANIS
50	Incisocalliope aestuarius	No	AQUANIS
51	Jassa marmorata	No	AQUANIS
52	Karenia mikimotoi	No	HELCOM/OSPAR
53	Laonome calida	Yes	AQUANIS
54	Marenzelleria neglecta	No	HELCOM/OSPAR
55	Marenzelleria viridis	Yes	AQUANIS
56	Melita nitida	No	AQUANIS
57	Mnemiopsis leidyi	No	Jensen 2013
58	Mytilopsis leucophaeata	Yes	HELCOM/OSPAR
59	Mytilus galloprovincialis	Yes	HELCOM/OSPAR
60	Nemopsis bachei	No	AQUANIS
61	Neogobius fluviatilis	No	AQUANIS
62	Neogobius melanostomus	No	HELCOM/OSPAR
63	Obesogammarus crassus	No	AQUANIS
64	Odontella sinensis	No	AQUANIS
65	Palaemon macrodactylus	Yes	HELCOM/OSPAR
66	Paralithodes camtschaticus	No	Jensen 2013
67	Paranais frici	No	AQUANIS
68	Pfiesteria piscicida	No	HELCOM/OSPAR
69	Pontogammarus robustoides	No	AQUANIS
70	Potamocorbula amurensis	Yes	HELCOM/OSPAR
71	Potamopyrgus antipodarum	No	AQUANIS
72	Proasellus coxalis	No	AQUANIS
73	Prorocentrum cordatum	No	AQUANIS
74	Pseudochattonella verruculosa	No	HELCOM/OSPAR
75	Rangia cuneata	Yes	HELCOM/OSPAR
76	Rapana venosa	Yes	HELCOM/OSPAR
77	Rhithropanopeus harrisii	Yes	HELCOM/OSPAR
78	Sargassum muticum	No	Jensen 2013
79	Skistodiaptomus pallidus	No	AQUANIS
80	Spartina townsendi var. anglica	No	Jensen 2013

	SPECIES NAME	Included in Case Study?	SOURCE
81	Synidotea laticauda	No	AQUANIS
82	Telmatogeton japonicus	No	AQUANIS
83	Thalassiosira punctigera	No	AQUANIS
84	Undaria pinnatifida	No	HELCOM/OSPAR

DTU Aqua National Institute of Aquatic Resources Technical University of Denmark

Kemitorvet 2800 Kgs. Lyngby Denmark Tel: + 45 35 88 33 00 aqua@aqua.dtu.dk

www.aqua.dtu.dk