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Abstract
Recruitment is treated here as the result of the development of a year-class through a series of particular
stages. The basis of classical fish population dynamics is, therefore, presented in terms of age-specific
and size-specific survival. The simple theory is extended to account for the fact that natural mortality
exhibits a decreasing relationship with the size of the fish. With these ingredients, focus is placed on
density-dependent growth and the relationship between ciassical recruirment curves and size-specific
recruitment curves is clarified. The analysis draws upon a number of existing models and their modi
fications. Two concepts of critical points on the size-specific rectuitment curve are introduced. Several
examples are included to elucidate the dramatic effects of a consistent amount of food on the shape of
the recruitment curve. The result of food and size specific recruitment is a stabilization of the recruit
ment curve against variations in the mortaliry rate at medium to high levels of initial numbers of first
feeding larvae. It is, rheoretically, possible that the year-class strength is already fixed during the first
months of active life during which the individual fish larvae gain a factor of 100 in weight and are com
pletely dependent on the production of copepod nauplii as food. Good year-classes can be explained
by a combination of high food availability and iow mortality in the present theory.

The focal point of the paper is ten elements of simple but general theory. Each theory block is cx
plained by a Comment and an associated Exampie on how to use the theory. The size-based theory
makes recruitment studies part of overall fishery population dynamics. Several new mortality concepts
are introduced with implications for e.g. length-based fish stock assessment.
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Introduction
A stock and recruitment relationship is most often identified with either the Ricker
(1954) type or the Beverton & Holt (1957) type of recruitment curve. The concept
of recruitment is usually related to the abundance at some age of first capture ob
tained from a VPA. The variability in recruitment is considered the key issue in
most recruitment research. The decimation of a year-class takes place at a constant
rate of mortality.

These statements are but four examples of attitudes and beliefs or concepts and
mathematical relationships that fisheries research gradually has accepted as parts
of the traditional treatmeflt of fish populations. This, of course, is flot without rea
son. The ciassical concepts of age-specific year-class dynamics (B&H, op. cit.) are
simple and useful in particular as a basis for fish stock assessment in temperate wa
ters. But, it is possible that the traditional way of thinking may be less useful for
sustained progress in recruitment research, and a major reason for the fact that
fisheries research after one cefitury still has flot been abie, for even the most inten
sively studied stocks woridwide, in just one case to predict year-class strength in
one single year (Rothschild, 1986). Then, as the very first step, it is flot only useful
but necessary to stop for a moment and reconsider the classical concepts. With
such a critical attitude in mmd we return to the four initial statements concerning:

(i) Classical recruitment curves
(ii) The concept of recruitment

(iii) Recruitment variability
(iv) Exponential decay of riumbers at age.

The Ricker curve and the B&H recruitment curve are rather widely used, part-
ly because of theoretical considerations as to how compeflsatory mortality might
work, but mainly, I fear, just because they are simple. These are the precise words
of Ricker (1973, p. 337) and he doubts ‘if ever data are abundant enough to pro-
vide a definite due as to the expected shape’ of the recruitmeflt curve. This is but
another way of expressiflg the need for theory development. We only obtain one
recruitment domain per year. The term domain is used here to indicate that the
concept of a recruitment point is an artefact (apart from extinction at the origin).
Considerable uncertainty may be attached to total catch-at-age data (the input to
VPA) for various reasons. Furthermore, the procedure of VPA in itself is flot an
estimation technique but rathei a technique for backcalculating numbers at age
based on questionable mortality assumptions. This point will flot be pursued fur
ther in the present paper but, taking ali the uflcertainties into account, the out
come of a VPA should really be represented by a stock and recruitmeflt plot of
patches and flot points. Data from young fish (trawl or acoustic) surveys may, of
course, reduce the uncertainty but whatever sensors the future fosters, the basic
task in fisheries research and stock assessment will always be one of extracting
information from imperfect data (compared, say, to various branches of physics)
(see discussion by Rothschild, 1986). Theory on the underiying biological-physi
cal processes governing recruitment is needed (Bakun, 1985) to help extracting
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information from abundance data on e.g. the shape of the recruitment curve
(Beyer, 1981).

There are really only two possibilities for dealing with the concept of a recruit
ment curve at present. If the purpose simply is to obtain an empirical relationship,
one can use an arbitrary mathematical relationship that is capable of producing a
sufficient spectrum of various shapes of recruitment curves. The cost involved,
compared to the classical recruitment curves, is represented by an increase in the
number of parameters to be estimated (Le. at least a three parameter system is re
quired). A sensible choice is suggested by Shepherd (1982). However, if the pur-
pose is one of increasing our understanding, the recruitment curves must represent
the logical consequences of hypotheses on the vital rates as stated above. This latter
point in combination with Ricker’s fear or his indirect advice flot to exclude a re
cruitment curve because of a more complex mathematical relationship constitutes
the first beginning point of the present study.

The second statement refers to the definition of the concept of recruitment.
Recruitment has (for good reasons) been considered as an external factor or input
to the traditional assessment models. Apparently (but very likely incorrectly) there
has been no need for a more precise definition of the term. However, dealing with
recruitment as part of fish population dynamics immediately puts focus on this
need. Recruitment to the size at beginning metamorphosis, to arrival on the fishing
ground, to the age of first capture, to the 50%-retention length, to the size of first
maturity, to the age of massive maturation or whatever represents the outcome of
a complex growing-up process and it is necessary to define precisely the beginning
as well as the end of each of the stages this process is considered to comprise. In
the present study, recruitment is regarded as the outcome of the development of a
year-class through a particular stage. For example, this stage may be defined as a
specific age interval or a specific size interval. Tt is of particular importance to note
that recruitment represents the outcome of a conditional process, i.e. the number
of survivors with a specific property (the end criterion) given an initial number of
fish with properties according to the beginning criterion. The term ‘recruitment’
can never stand alone. Tt must be accompanied by a term specifying the particular
stage we are dealing with. If flot specified, the initial condition is tacitly assumed
to be represented by the parental stock. This definition of recruitment in terms of
stage-specific survivorships constitutes the second beginning point of the present
study.

The third statement concerns recruitment variations as the focal point of re
cruitment research. Tt is clear that the unexpected — a sudden departure from the
expected trend — has greatest economical impact. Tt is perhaps also clear that the
effect of specific variations in year-class strengths on the stock and, hence, on the
fishery increases as the mean age of the population decreases. However, looking
back on past efforts in recruitment research, it is less clear that studies of the mii
lions of events that affect recruitment variability will bring us much doser to an
understanding of the causes of good and bad year-classes uniess we receive some
guidance as to what to look for and how to set priorities in this research. To clarify
one aspect of this problem, Fig. 1 shows three typeS of recruitment patterns (for
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Fig. 1. Percentage deviation in recruitment
at one year of age (for North Sea herting,
haddock and plaice( from long-term
means. Data from VPA, subsequently ad
justed to one year of age using standard
mortality assumptions according to Gar
rod (1982). Note that the size (length or
weight) using this measure of recruitment
may change considerably from one year to
the next.

more, see Rothschild, 1986). The figure focuses on the most reliabie information
obtained from the VPAs, i.e. the relative changes in abundance.

Recruitment to the stock of North Sea plaice shows an impressive degree of sta
bility. Apart from the good 1963 year-class, which is almost three times the mean
(i.e. mean plus almost 200%), and the somewhat smalier 1972 year-class, the van
ations are so small that the question is if recruitment varies at ali (Ursin, 1982).
This recruitment pattern is typical for North Sea plaice and cod. Good year-ciasses
are rare. The strongest year-classes are about 5 times the size of the weakest ciasses.
North Sea herring shows a recruitment variation of about a factor of 10. However,
recruitment to North Sea haddock varies by a factor of about 100.

Fig. i and similar examinations of other stocks (e.g. Ursin, 1982, Rothschiid,
1986) show that recruitment usually invoives year-to-year fiuctuations of 25%-
50% from the long-term mean. Once in a while, the unexpected occurs — good or
bad year-ciasses. However, strong year-classes do flot occur very often, say, on av
erage for 25 stocks once every 11 years, see Rothschild (op. cit.). The general sit
uation for an arbitrary stock thus seems to reflect a factor of 10-20 in recruitment
variation. We do not know the causes of this variation. Some stocks, like North
Sea plaice exhibit smaiier variations. Reiativeiy few stocks, such as North Sea had
dock, vary by more than a factor of 50. The question is whether it should be sur
prising that recruitment varies so much? Suppose that an average year-ciass of say,
North Sea cod represents a survival of one egg out of ten million for the deveiop
ment to the size of maturity (in order to account for the generation repiacement).
Then deviations of ±10% in the vital rates from average conditions imply that re

1950 1955 1960 1965 1970 1975
Year of birth
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cruitment should vary by a factor of almost 700! (see also Ex. 5 and Houde, 1987).
Changes of ±20% in growth and mortality would imply that the recruitment to
the adult stock should vary by a factor on the order of 700 000! Thus what imme
diately appears very variable (Fig. 1) in reality represents an amazing degree of sta
bility. There is, thus, reason to believe that we may obtain some guidance as to how
to explain the causes of recruitment variability by first trying to understand the
normal situation, i.e. the disguised but fundamental stability of marine life and its
causes (Ursin, 1982). This switch in attention from the apparent variability to the
underlying stability represents the third beginning point of the present study.

The fourth statement concerns the convenient perception of the rate of natural
mortality being constant in classical age-specific theory. The fact that predation
mortality, the single most important known cause of natural mortality in juvenile
life, bears a decreasing relationship to body-size (e.g. Ursin, 1967; Ware, 1975;
Peterson & Wroblewski, 1984 and Anon. 1988) seems to enter the circles of stock
assessment at a slow rate. Second, why do we only treat the development of a year
class as a function of age? The importance of body-size in describing ecosystem
properties was recognised already in the 1920s (Platt, 1985). Haldane (1928) con
sidered the size of an organism as the single most significant attribute. Replacing
chronological age with a measure of physiological age such as body length or body
weight represents an interesting alternative to classical fish population dynamics.
In view of the importance of sizes for understanding the predation process (e.g.
Andersen & Ursin, 1977; Beyer, 1981) and in general for the vital rates (see re
views by Werner & Gilliam, 1984 and Anderson, 1988), it is likely that a switch
from a description in chronological age to physiological age (e.g. length-based the
ory) also will be useful for the integration of recruitment studies with overall pop
ulation dynamics and fish stock assessment.

These critical comments (related to the initial four statements) immediately
raise a number of questions to basic theory: Everybody knows the exponential
decay of numbers with age because it is part of basic training in fish population
dynamics. But what is the equivalent relationship for numbers at length? Why is
this flot part of basic training? How do these relationships change when the mor
tality rate is, say, inversely proportional to length? What are the implications for
length-based fish stock assessment? In more generalized terms, what is the major
difference between age-specific and size-specific survival? Which types of multi
plicative rules can be applied in size-based theory? For example, when is a change
in the rate of growth going to affect the rate of mortality? What is the connection
between the classical recruitment curves and density-dependent growth? What is
the principal difference between the shapes of age- and size-specific recruitment
curves? Does density-dependent growth stabilize recruitment against fluctuations
in the rate of mortality? How can the relationship of density-dependent growth be
derived from food competition? Does the shape of the recruitment curve and its
stability depend on the available amount of food for the stage-specific development
of the year-class? Can recruitment really be stabilized within the first couple of
months? The purpose of this study is to provide a simple theoretical basis for an
swering such questions.
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Comment
In an attempt to enhance readability and to focus on basic principles, this paper is built
up in ten small theoretical blocks with a minimum of mathematics. Although the entire
paper deals only with the most simple ciassical theory (considering the year-class to com
prise identical fish) the interpretation or the logical consequences of the theoty are flot
always that simple. These matters are thoroughly explained ii Comments 1 to 10 in the
text and in Exampies 1 to 10 collected at the end of the paper. A list of notation is also
included. Each Comment refers to the particular theory block with which it is placed and
also to the Exampie with the same number. The idea is that a Comment contains remarks
on general principles and also, to a certain degree, the conclusion from the more thor
ough examinations in the associated Exampie. The first three blocks/comments/exam
ples deal with age-specific theory and the next series of three provides the basis of size
specific theory. Examples 7 to 10 deal with density-dependent growth and the effect of
food competition. These Examples are more comprehensive and, therefore, set up as in
dividual papers each cofltaining an introduction and a conciusion. Exampies are crossed
referenced but self-contained in the sense that they can be read independently of each
other (with few references to the main text). It should, thus, be possible to read the paper
in different ways. The cost of this procedure is, of course, a certain amount of overlap
but, perhaps, it is useful that certain points are explained in different ways since we are
trying to deal with a synthesis of some basic principles in recruitment related fish popu
lation dyflamics.

The purpose of this paper is not to consider species specific recruitment dynamics
or assessment but rather to present some elements of size-based theory which may
be useful in such species specific investigations.

Age-specific survival
We are considering the decimation of a year-class during a period of time, T = t1 —

t0, starting with N0 fish of age t0. Let M(t) denote the instantaneous rate of mor
tality at age t, i.e. the decay in numbers N(t) is governed by

dN(t)
= -M(t)N(t) (1)

dt

or, by the survivorship

S(t1, t0)
= N(t1)

= exp { — ftlMHd} (2)
N(t0) to

Multiplying the start number by this age-specific survival gives N1, the number of
fish alive at age t1, i.e.

N1=N0S (3)

This constitutes the fundamental basis of traditional fish population dynamics.
The year-class is considered to be comprised of identical fish and the entire ques
tion of survival and recruitment becomes one of specifying the fishes’ mortality
rate and, in particulat how mortality changes with time or age.
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Comment I
It is mathematically convenient to operate with M(t), the rate of mortality at age t.
However, as an instantaneous rate M(t) is a non-observable quantity which can only be
measured and understood in terms of its cumulative effect across a smaller (dt) or larger
interval of time, i.e. when iritegrated into a cumulative mortality. In this deterministic de
scription, the significance of a low or a high value of M(t) is most easily interpreted by
considering situarions ifl which the rate of mortality is assumed to attairi low or high val
ues for certain periods of time. Suppose the cohort is exposed to M ifl ‘r0 units of time and
put Mr0 = —inSo. The survivorship S0 = 1/e 0.368 is achieved with a cumulative mortality
of one, i.e. Mr0 i or r0 1/M. For example, M = 0.1 yr1 means that 36.8% of the pop
ulation would stil! be alive if this rate of mortality had been operating for 10 yrs. If M
0.1 d-1 (or 36.5 yr1) then 36.8% of the fish larvae would survive ten days. In this situation,
we often (incorrectly) say that the mortality rate is 10% per day. However, the exact daily
mortality factor is one minus the survivorship on a daily basis, i.e. 1—exp(—0.1) or 9.52%.

Fish stock assessment is usually based on an assumption of a constant and low rate
of natural mortality for all age groups. In lack of anything better, it is simply Beverton
& Holt’s (1957) estimation of M = 0.1 yr1 for adult plaice and M = 0.2 yr’ for adult
haddock in the North Sea that has been adopted in the VPAs. This mortality figure for
plaice was partly based on an estimate of the survival from age 5 yrs in pre-war samples
to age 13 yrs in post-war samples (of very few old fish). There was no direct esrimation
of M availa ble for the younger age groups. However the survivorship to maturity must
be about 106 exp(—13.8). To explain such a cumulative mortality of 13.8 to age, say
3-4 yrs, M(t) must increase considerably from the older to the younger age groups. For
a simple treatment of this situation, suppose the rate of natural mortality is inversely
proportional to age, M(t) a/t. Then, from Eq.(2), the survivorship from age t0 to t1 be
comes (t1/t0).The survivorship for an increase in age by a factor often (t1 =10t0) is sim
ply 10-”. Thus, the survivorship from the onset of feeding at age, say 2 weeks to 20 weeks
of age (4.6 months or 0.38 year) is 10” and equals the survivorship from 0.38 yr to 3.8
yrs of age. If a = 3, then the survivorship from the onset of feeding to maturation is about
10_6. The mortality at first feeding in this description is 78 yr1 (0.21 d-1) but diminishes
by one half in the course of two weeks. Perhaps such a high larval mortality may be con
sidered sensible since we have not accounted for mortality during the egg and yolk-sac
stages. Howevei the mortality at three years of age is i yr or five times the standard
value of 0.2. Such simple considerations indicate that juvenile mortalities are grossly un
derestimated in traditional fish stock assessment.

The multiplicative nature of the survivorship in Eq. (2) has some important con
sequences that are valid independently of the actual course of mortality during the
time-period considered.

If the time-period considered is divided into cofisecutive sub-periods, then the
total survivorship equals the product of the individual survivorships.

If the mortality rate is changed by a factor which is constarit over the time-pe
riod considered, then the new survivorship becomes the old one to the power of
this constant factor. For example, a doubling in mortality results in the square of
the initial survivorship. Independent causes of mortality give rise to multiplicative
survivorships, i.e. additive mortalities M1 + M2 + M3 ... = M produce the survivor
ship S1 S2 S3 ... S. In general, we can say that a linear combination of mortalities,
bM1 + cM2 produces a power factorial survivorship, S112 S2c.
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Comment 2
The multiplicative rules enable us to caiculate the relative effect on recruitment of rela
tive changes in cumulative mortality without knowing the exact course of mortality.
Suppose S denotes the survivorship under average conditions during some part of pre
recruit life. If mortality in one year happens to be, say, 10% higher than usual for this
phase then the recruitment to any later age will change by a factor of S°10. Hence, the
ratio of year-class strength will vary by a factor of S°2° due to ±10% changes in mor
tality. If the survivorship in the larval stage is 0.01, then year-to-year variations in larval
mortality of ±10% will cause a good year-class to be 2.5 times stronger than a bad year
class. If these changes in mortality occur during a juvenile phase which is characterized
by S 0.0001, theri recruitment will vary by a factor of 6.3 (or 2.5 2). Changes in mor
tality of ±10% during ali juvenile stages (i.e. S =106) will result in a factor 16 (or 2.5)
variation in the recruitment to the adult stock. This variation will be reduced to a factor
of 4 (or 161’2) if mortality only changes by ±5%.

In classical stock and recruitment models, the integral period of time in Eq. (2) de
notes the entire pre-recruit period, i.e. we are considering the decimation of the
year-class from when egg-production takes place, N0 = E eggs at age t0, until R fish
at age tr are recruited to the fishery. The choice of age zero is arbitrary. Usually,
hatching is considered age zero in which case t0 is negative. Recruitment is obtained
as egg-production multiplied by the age-specific survivorship for the pre-recruit pe
riod,

R = E S(t, t0) (4)

The survivorship must be derived from Eq. (1) based on a mortality theory yielding
M(t). This theory must involve some sort of density-dependent regulation of the
cumulative mortality in order to account for the observed stability of recruitment.

Cornment 3
The traditional recruitment curves are derived from basic principles. If M(t) is a linear
function of E, then by applying the multiplicative rules we may write Eq.(4) using the
Ricker form,

R = ES1S,E = S1E exp(—aE), a =—lnS2; M(t) = M1(t) + EM2(t)

where S is the survivorship through (t0,tr) when the mortality coefficient, M(t) is oper
ating as the only source of mortality. This is the generalization of the Ricker (1954)
model in the sense that a Ricker curve is obtained for age-specific recruitment for what
ever continuous functions, M1(t) and M2(t), we may propose.

The mortality coefficient, M2(t), is explained by cannibalism in the Ricker formula
tion. Beverton & Holt (1957) replaced E by N(t) so that the rate of natural mortality is,
instead, a linear function of the size of the year-class at the same instant in time. In this
formulation, B&H used the mortality coefficient, M2(t), to describe the effect of severe
competition among young fish for food. Note that the survivorship is flot given by Eq.(2)
because M flow is a function of N(t) and flot just an explicit function of age, t. It is nec
essary to go back to the starting point and obtain numbers at age by solving Eq.(1).

The Ricker and the Beverton & Holt recruitment curves will reappear in equivalent
cases of the size-specific theory. We shall use N0 rather than E to designate the number
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at t0, the beginning of the age-interval. This is because we do flot consider the process of
spawning or the number of eggs as creating the initial condition in the present recruit
ment study. The beginning is simply described by N0 fish of weight w0 at age t0 afld the
theory does flot depend on whether this instant in time coincides with the onset of feed
ing or some later development stage. Of course, the interpretation of the theory may de
pend on this choice. Situations of the Ricker type in which the vital rates depend on the
initial number are referred to as start-density dependent in contrast with density-depen
dent processes formed by the B&H type of situations (cf. the discrimination made by
Harris (1975)).

Instead of relating the effect of food competition to a density-dependent rate of
mortality (which in the first approximation produces the B&H type of recruitment
curve), it seems sensible and in agreement with Beverton and Holt’s (1957) belief
to derive the effect on the survival directly from the changes in growth rates that
must result from severe competition for food. This is in accordance with the Ricker
& Foerster (1948) suggestion that when the larval density is low, individuals may
grow more rapidly through a critical period and, thus, suffer smaller losses from
predation than when the density is high. To describe directly such effects of
changes in the growth rate on the cumulative mortality we need to express the sur
vival as a function of both growth and mortality.

Size-specific survival
We are considering the decimation of a year-class during the period of time (i-1) in
which the fish increases its body-weight from w0 to w1. Let p.(w) denote the instan
taneous rate of mortality at size w, i.e.

dN(w)
=-(w)N(w); w=f(t) (5)

where N(w) is the number of fish in the year-class of size w at time t. The year
class is considered to comprise a population of identical fish starting with N0 fish
of size w0 at time t0. Tt is the growth rate g(w) i.e.

=g(w) and w0=f(t0) (6)

which, in this simple theory, determines a one-to-one relationship between size and
age and enable us to express the mortality rate as a function of weight, pw), in
stead of age, M(t), or vice versa. Dividing Eq.(5) by Eq.(6) yields

dN(w) = — /L(W)
N(w) (7)

dw g(w)

or, the weight-specific survivorship (van Sickle, 1977),

N(wi) “‘ ,u(x)
l(w1,w0)= =expj_J — dxJ (8)

N(w0) g(x)

Multiplying the initial number of fish of size w0 by this survival gives the number
of fish still alive at size w1:

N1=N01(w1,w0) (9)
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The associated period of time, T1, required to grow from w0 to w1, is obtained by
integrating the reciprocal of the growth rate:

dx
T(W1,w0)

= J = t1 — t0 = i-1 (10)
w g(x)

Comment 4
Characteristics of the body-size distribution may be derived from the survivorship in
Eq.(8). For example, the mean size-at-death is simply obtained by integrating the sur
vivorship. The formulas above are valid whether we use weight or, say, length to specify
size. The essential point is that the ‘new’ rate-variable, g, denotes the rate of increase in
the physiological attribute of the fish that has been chosen in the descriptiofl of the year
class.

Notice that N(w) designates numbers-at-weight. The number at age t is, therefore,
N(f(t)) which (iricorrectly from a mathematical point of view) also is called N(t) in the
previous section. A mathematically correct notation would be, for example, N0g, (t),

Novejgh(W) and N,flS,h(L), respectively for numbers at age, weight and length. With this in
mmd the more simple N-notation is maintained. Tt should flot cause confusion because
mortalities afid survivorships are designated by different symbols at age afid at size.

The important variable in determining the survival to a certaifi size w1 is NOT the
rate of mortality BUT JL/g, the rate-ratio of mortality to growth. If this ratio is constant
then we obtain an exponential size-specific survivorship,

1(w1,w0) exp(—(r/g) (w1 — w0)) ; /g constant

Suppose the rates of mortality and growth decrease in exactly the same manner with in
creasing size, then .r/g, the constant of proportionality, determines the exponential dec
imation of numbers at size in the year-class. If p and g are constants, then (w1 — w0)/g

is the time required to grow through the size interval. The dimension of r/g is 1/SIZE.
We obtain the dimensionless rate-ratio, pjG, by introducing the instantaneous rate

of growth, G(w) = g(w)/w. If this instantaneous rate-ratio is constant, then Eq.(8) pro
duces a power function,

1(w1,w0)= (wi/wo)’; r/G constant.

A special case anses if the ratio is one, fL = G. Then the biomass of the year-class remains
constant and the survivorship becomes simplyw0/w1.Supposew1/w0=100. The survival
in this situation is 1% if p = G but increases to 1.6% if the rate of mortality is reduced
by 10% to j.r 0.9G in which case the biomass increases by a factor of 1.6. If the rate
of mortality is half the specific growth rate, r = 1/2G, then 10% of the fish are able to
gain a factor of 100 in weight thereby increasing the biomass of the year-class by a factor
of 10. Note, again, that it is the constant ofproportionality, pjG, which appears in the
power of the survivorship equation. Tt is, thus, a delicate balance between high rates of
growth and high rates of mortality that determiries the increase of year-class biomass, in
particular during the larval stage (Jones, 1973).

Maximum survival across a small size interval, dw, occurs at that size where
pw)/g(w) attains its minimum value. In the simple Beverton & Holt (1957) theory with
constant mortality, jr = M, and the von Bertalanffy growth equation, g(w) = Hw23 — kw,
W = (H/k)3, this minimum is attained at Wm = /27W, the point of inflexion of the
growth curve. The maximum biomass is achieved at Wb = W,,/(1+M/k)3.If M = 0.5k
= 1.5K, then the size at maximum biomass coincides with 0.296W, the size at minimum
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Mig. With a more realistic mortality model, p(w) = M(W/w)3,taking into account
that predation mortality decreases with increasing size, the minimum of p/g is attained
at Wrn = 27/64W Maximum biomass occurs at W0 = W0,(1 — M /k)3 which is identical
to the former size if M, = 0.25k = 0.75K. The rate of mortality at Wm Wb = 0.422 W
for this situation is equal to K.

At first sight, the size-specific survivorship in Eq. (8) appears very much different
from the age-specific survivorship in Eq. (2) but it is flot! We are, iri both cases, de
scribing the fate of a cohort of fish under the same conditions. The survivorships
simply express survival as a function of cumulative mortality:

survivorship = exp (—cumulative mortality)

where
u(w)cumulative mortality J’ M(t)dt

= f dw
WO g(w)

Fig. 2. Basic concepts in size-specific
theory. Chronological age is re
placed by a physiological age mea
sured as body-size. The physiologi
Cal rate of mortality equals the rate
ratio of mortality to growth. The
weight-gaimng factor, p = w1/w0,oc
curs in the applications as the most

z important factor in specifying the
size-interval. Once p is specified and
the physiological rate of mortality
expressed as a function of size, then
the survivorship (1) may be derived.
The survivorship always refers to
numbers. But since we consider
numbers at size, a simple p-scaling of
the graph gives biomass, i.e. B1 = B0
ip, or the ratio of biomass increase
equals the survivorship multiplied
with the weight-gaining factor.

The shift from a description in age to a description in size is here merely one of
changing integral variable. Note that 1/g(w) is a measure of the time spent at size
w and t(w)/g(w), thus, represents the instantaneous ‘physiological rate’ of mor
tality at size w which also is expressed by Eq.(7) (see Fig. 2). The number-at-age,
N(t), caiculated from the survivorship in Eq.(2), will be the same as the number
at-size, N(w), obtained from Eq. (9) if w is the size at age t.

Comment 5
For most applications, we want to compute the recruitment to a certain age or the sur-
viva! across a certain size interval and then age-specific and size-specific survival may re
spond differently to changes in the environment. For example, if special environmental
conditions cause the growth rate at any age (size) to change by a constant factor b com
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pared to ‘normal years’ then recruitment to age, say, one year, will not change IF the rate
of mortality is unchanged. However, the size-at-age will have changed according to the
constant factor (b < i describing a growth reduction). The time required to grow through
any div has increased by a factor of 1/b. Thus, the cumulative mortality to a certain size
has increased by a factor of 1/b causing the survival to change by a power of 1/b:

survivorship = exp (—cumulative mortality/b)

[exp (— cumulative mortality)]
= (survivorship)

This is but another example of the multiplicative aspects of the survivorship. Suppose
the rate of mortality in the same year also happens to change by a factor of c. The sur
vivorship for this situation equals the normal survivorship (for b c = 1) to the power
of c/b. A change in the environmental conditions involving opposite changes in growth
and mortality thus increases its effect on the survivorship. Annual changes in the vital
rates of only a few per cent during early life (where the survivorship is small) can explain
that recruitment to a certain size varies within 25-50% of the long-term mean!

The effect of simultaneous and independent changes in growth and mortality rates
on stage duration and survival can be expressed as follows (Werner & Gilliam, 1984):

g,. = b g; b and c constants

/.L. = C /t; W0 W W1

produce

T, = T/b
(11)

i,. = i’

Tt is a straightforward matter to apply these multiplicative rules to additive mor
talities or situations that require a splitting up of the size interval.

Comrnent 6
The multiplicative rules with respect to the effects of changes in the rate of a deiisity-in
dependent mortality are generally valid for survivorships to specific size or age. In some
situations, however, the multiplicative rule in Eq.(11) with respect to growth is NOT
vahd because the rate of mortality is affected by a change in the growth rate. The issue
here is entirely one of how mortality depends on age and size.

Suppose the rate of mortality exhibits a decreasing relationship to age. In this situa
tion, the survival to a specific age is not affected by a change in growth. A growth in
crease, however, implies that a specific size is attained at an earlier age causing the rate
of mortality at size to increase as well. The size-specific survival will, therefore, flot fully
increase to ‘the 1/b-power’, i.e. S = S and I < 1 < 11; b >1.

The size-specific survival will obey Eq.(11) if the rate of mortality depends only on
size. In this situation, however, the age-specific survival also changes because mortality
at-age now depends on size-at-age. Exactly how S will change depends, of course, on the
formulation of the rates of growth and mortality as functions of size. But compared to
the 1/b-power rule for changes in size-specific survival or in recruitment-at-size (for con
stant initial number), the changes in recruitment-at-age are moderated, i.e. in the case of
a growth increase (b >1), recruitment increases according to 1 = 1’and S < S. <
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when the situation is one of decreasing mortality with increasing size. Assurne that it
happens occasionally that larger fish larvae are exposed to a higher mortality than the
smaller larvae. In this situation of increasing mortality with increasing size, recruitment
at-size will increase as above due to a growth increase but recruitment-at-age will de
crease, i.e., l = 1> land S < S; b >1. A growth reduction will cause recruitment-at
age to increase but recruitment-at-size to decrease, i.e., 1. < I and S > S; b < 1!

We are flow ready to consider the causes of changes in the rate of growth. Instead
of describing a growth change by a constant factor b, we need to incorporate a de
scription of how this factor depends on the number of fish and the amount of food
available.

Density-dependent growth and classical recruitment curves
We are considering simple ways of quantifying the suggestion of Ricker & Foerster
(1948) that density-dependent growth affects cumulative mortality and, hence, re
cruitment. Suppose N0 fish of size w0 compete for food until size w1 is attained.
The most simple treatment of the R&F idea is to express the rate of growth as a
function of size multiplied by a function of N0, the initial number of fish in the co
hort or the start-density. If A denotes a food-measure of the carrying capacity and

g(w,N0)= go(w)/(l+No/A); w0ww1; N0zrN(W0) (12)

then growth takes place at the density-independent rateg0(w) if the start-density
is iow (N0 « A), precisely half theg0-rate if N0 = A and, at a rate inversely pro
portional toN0 , Ag0 (W)/N0at high start-densities (N0»A). Noting that the N0-
term in Eq.(12) represents a growth reduction compared to density-independent
growth (i.e. b = 1/(1+N0/A) in Eq.(11)), the survivorship across the size interval
(w0,w1)as a function of N0 follows directly from the multip[icative rule,

I — I 1*N!A
— I b . — I — —11 I

—

— a1 exp—a2 0) a1
— , —

— r

where i0 denotes the maximum survival in the case of density-independent growth,
i.e. when growth and mortality are determined by g0 (w) andt0(w), the size-spe
cific vital rates. Hence, recruitment at size w1, N1 = N0l1 is described by the Ricker
type of curve for any choice of the size-specific vital rates. If the rate of mortality
is changed by a constant factor c, then the survival changes according to Eq.(11),
i.e. the first Ricker coefficient is changed to a1’ and the second to ca2. The survival
to size is, therefore, very sensitive to fluctuations in A or t. In other words, the
type of start-density dependent growth in Eq.(12) does flot stabilize recruitment
against fluctuations in the vital rates.

Comment 7
It is not surprising that Eq.(12) leads to the Ricker type of recruitrnent curve. The sur
vival depends only on the rate ratio, pjg, and the start-density-dependent growth in
Eq.(12) will therefore produce exactly the same effect as a start-density-dependent mor
tality, t(w, N0) p. (w)(1+N0/A), as long as we are only concerned about recruitment
at a specific size.
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Recruitment at a specific age generally does flot follow a Ricker type of curve. The
shape of the age-specific recruitment curve depefids Ofi the age of recruitment and the
size-specific vital rates. The curve may reach a local maximum and a local minimum but
will, ultimately, approach an asymptote (in case of density-ifidependent mortality). If the
rate of mortality is constant, thefl recruitmeflt will always increase in proportion to Na,
whether or flot the growth rate is density-dependent:

R = N(tr) N0 S ; S = exp(—M(t — t0)) ; M constant

Suppose the pre-recruir period consists of a period with high, size-dependent mortality,
M +r0(w), and a subsequent period with low, approximately constant mortality, M. If
the additional mortality,0(w), operates in the size interval (w0 ,w1) fri combination with
the start-density-deperident growrh described by Eq.(12), then it follows directly from
the multiplicative rules that the recruitment above for constant M is reduced by the sur
vivorship in Eq.(13), i.e.

R N0 Sa1 exp(—a,N0); ift1(N0) < t

wheret1(N0) is the age at size w1. This is the generalizatiofi of Beverton & Holt’s (1957)
quantificarion of rhe R&F suggestion. The size-specific recruitment curve is simply
copied to age and for whatever continuous functions, g0(w) and 0(w), we propose, re
cruitment at age t is described by a Ricker curve if the rate of mortality becomes constant
before this age is attained.

Alternatively, one may replace the initial number N0 in Eq.(12) with N(w), the
number of live fish of size w (Shepherd & Cushifig, 1980):

g(w,N)=g0(w)/(1+N(w)/A); w0ww1 (14)

As a consequence, the larvae start to grow at a rate determined by Eq.(12) and then
gradually achieve a growth rate that approaches the density-independent leve1 of
g0(w) as the year-class diminishes. This leads to the Beverton & Holt (1957) type
of recruitment curve,

11
=

; = N0 1 (15)
i + (1

—
l) N0/A

where 10 denotes the maximum survival at low initial riumbers (N0 « A) deter
miried by the size-specific vital rates. The survival is still sefisitive to changes in A
and t but the effect is somewhat moderated compared to the power-rule in
Eq.(11). If t is changed by a constant factor, c, then it is only the maximum sur
vival that will change to the cth power of its initial value. Hence, the new survivor
ship is obtained by Eq.(15) with 1 replaced by l. In the case of a mortality re
duction (c < 1), the survival thus increases but flot quite to the cth power of its mi
tial value (i.e. <l’). The increase in survival that occurs as a direct consequence
of the mortality reduction gives rise to a growth reduction (through density-depen
dent regulation of the growth rate) which partly counteracts the mortality reduc
tion. This counteractive effect of mortality on growth is relatively weak in the pre
sent model and we may conclude that density-dependent growth as formulated by
Eq.(14) does flot stabilize recruitment against fluctuations in the vital rates
(Shepherd & Cushing, 1980).
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Comment 8
Shepherd & Cushing (1980) considered the special case of exponential growth,g0(w) =

Hw, and exponential decay of the cohort, t0(w) = M. The result in Eq.(15), however, is
valid for any continuous functions, g0(w) and p(w), specifying density-independent
growth and mortality as functions of size in the interval considered. The B&H type of
curve for size-specific recruitment is simply always obtained if the rate-ratio of mortality
to growth can be separated into a size-dependent factor and a linear density-dependent
factor. For these reasons, Eq.(15) represents a generalization of the S&C model or sim
ply, the size-version of the B&H recruitment curve.

Age-specific recruitment, in general, is flot described by the B&H type of curve. The
shape of the curve depends on the age of recruitment and on the size-specific vital rates.
The actual shape of the curve is moderated compared to the case of start-density depen
dent growth because of the counteractive effect of mortality on growth. Note that the
situation considered by B&H in their treatment of the R&F suggestion applies equally
well to ariy case of density-dependent vital rates: The size-specific recruitment curve is
copied to recruitment at a specific age as long as the larvae grow through the critical size
range and reach a constant rate of mortality before or at this age of recruitment.

From a mass point of view there is a major difference between a situation of N1 re
cruits at size w1 and the situation of R recruits at age tr The biomass is merely a scaling
ofsize-specific recruitment, B1 = N1w1,but the biomass at age-specific recruitment, B(t)

R w(t,), depends on the decreasing relationship between weight, w(t,), and N0, the mi
tial number of fish. In the most simple case of a constant rate of mortality, the straight
line of age-specific recruitment in the S&C model represents a complex curve for
biomass. The shape of the biomass curve depends on the age of recruitment and may
reach a local maximum followed by a local minimum prior to the asymptotic behaviour.
The same type of biomass curve (with an even more pronounced max-min amplitude) is
obtained in the equivalent case of start-density dependent growth.

The rates g = g0 /(1 + N/A) and t = p produce the same size-specific survivorship
as the rates g = g0 and = (1 + N/A)p0but, as already indicated, there is a major
difference in the interpretation of the two situations. The latter does flot reflect the
R&F suggestion but rather the extreme case of larval death from starvation or in
directly from debility due to insufficient food. Other interpretatioris of density-de
pendent mortality such as predator switching are, of course, also possible but are
flot dealt with in the present study. The important point here is that a linear model
can be interpreted as providing a first approximation to the description of density
dependent mortality irrespective of the underlying causes. This is flot really the
case with the models of density-dependent growth in Eqs.(12) and (14). The in
verse linear relationship takes the form of a hyperbola which is difficult to interpret
as a general first order approximatiofl to some rationale of studying the effect of
competition for food. These models (constructed to represent the growth counter
part to the ciassical mortality considerations of age-specific stock and recruitment)
are, nevertheless, mathematically convenient and useful for gaining some insight
into the effect of density-dependent growth.
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Food competition theory and recruitment stability
In creating a rational framework for investigating the effects of competition for
food on recruitment, the mechanism of density-dependent growth must be derived
from basic principles with the cost of losing the mathematical tractability inherent
in the traditional approaches here represented by Eqs (12) and (14). For a simple
treatment of the R&F idea in this direction, suppose that the rate of growth is de
scribed by a function, g(w,N,H(N0)), of weight, numbers-at-weight and of some
parameter which represents an unkflown function of the initial number, N0. The
mortality rate is considered to be adequately described by some function of size,
p(w). We shall consider the size-specific survivorship, 1 = I (pw0,w0), to gain a fac
tor of p in weight. This survival will be a function of the parameter H and we may
describe p-stage specific recruitment as follows:

=N011(H(N0)); p = w1/w0

Suppose H takes a constant value, H(N0) = A, then the recruitment curve is speci
fied (see Fig. 3, top).

We further introduce the maximum rate of growth, Hmaxg0(w), at size w as a
physiologically determined concept. The maximum growth rate puts an upper
limit on the survival which appears as a straight line on the recruitment plot (see
C-line in Fig. 3). The minimum rate of growth is assumed to be determined by the
survival, lmjfl = 1/p, of status quo in biomass (see B-line in Fig. 3). The interpreta
tion of the situation in Fig. 3 (mid-part) is as follows. The grey upper triangle rep
resents an unattainable zone for physiological reasons. The lower grey triangle rep
resents a reduction in biomass in the sense that the biomass of the recruits (sized
pw0), B1 = B0 1 p, is smaller than the initial biomass (B0). This zone of very few,
relatively old (very slow growing) recruits is corisidered unattainable mainly be
cause of evolutionary reasons (assuming a sufficiently high value of p, the weight
gaining factor).

The rate of food consumption by the year-class, C(t), is determined by N(w)i(w)
where i(w) = GGE-’ dw/dt denotes the individual rate of food consumption at size
w, and GGE, the gross growth efficiency. The total amount of food consumed
through p-stage recruitment, F, is obtained by integrating C(t) through T1 = t1 —

the time required to grow from size ru0 to size pw0. That is, replacing number at
size ru, I\[(w), with I’[ l(w,w0),

ptl ,tWo

F
= J C(t)dt = N0 J GGE-’ I(w,w0)dw (16)

to WO

Let us assume that F is constant from one year to the next. We can then use Eq.
(16) as the criterion for determining H(N0)and, hence, F-specific recruitment (see
Fig. 3, bottom part).

Coinment 9
Tt is, of course, necessary to specify the vital rates in order to obtain the survivorship,
1(w,w0), before the integral in the F-criterion can be evaluated. If the survivorship in Eq.
(15) for the S&C type of density-dependent growth in Eq. (14) is used in connection with
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a generalized allometric model of larval growth and mortality,g0(w) c< w1 and p(w) cc

w’, then the result shows resembiance to the situation in Fig. 3. The B&H p-stage spe
cific recruitment curve is reversed into a concave shape F-specific recruitment curve. The
procedure is simply to replace the constant A in the S&C density-dependent growth co
efficient with the parameter H(N0)which, then, is obtained from the food criterion. The
F-curve, thus, resuits from a combination of density-dependent growth and start-den
sity dependent growth where the latter is determined from the F-requirement. Note that
H also becomes a function of the rate of mortality. Tt is competition for food among
young fish that creares a strong mortality-to-growth effect through the F-criterion. This
stabilizes F-specific recruitment against variations in the rate of mortality.

The food-competition situation may be interpreted in relation to various size do
mains of larval and juvenile life but the F-formulation has been adopted with particular
reference to early life. Assume that p = wi/w0 100 is the ratio of larval size to prey
size and that the year-class comprises N0 larvae at the onset of feeding. In this interpre
tation the larvae depend entirely on the production of copepod nauplii as food while
growing through the size interval. Larvae that reach size w1, have a much broader food
spectrum available inciuding the standing crop of the smallest copepods. The cohort con
sidered eats, of course, nauplii in competition with other predators and F refers to the
fraction of the total copepod production that is consumed by the cohort. The model
above with constant F, clearly represents a very simple treatment of a complex and dy
namic situation of food competition but there is no need for a more elaborated treatment
in the present context.

The lower limit of the recruitment window (determined by the B-line) is flot a demand
for increasing biomass from the onset of feeding. The biomass may bear a decreasing
relationship to size as is actually the case in the S&C model, but the reduction must be
regained before or at recruitment.

The most simple treatment of the R&F suggestion, then, is to resume at the begin
ning point in Eq. (12) and specify the growth rate byH(N0,F,t)go(w). The depen
dency of F and t indicates that the food criterion also makes H a function of en
vironmental conditions specified by the amount of food consumed (Fn) and the
mortality rate (JL). In this model, the survivorship in the integrand of Eq. (16) can
be replaced with

l(w,w0)=l0(w,w0)1I’ (17)

and it follows that the F-criterion stabilizes recruitment. For example, a reduction
in spawning biomass (most likely) implies a reduction in N0, and H will, conse
quently, increase to meet the balance in Eq. (16). This improves survival and thus
stabilizes recruitment against variations in the spawning stock. If N0 is constant
but favourable environmental conditions in one year cause a reduction in mortal
ity, then I-I must decrease as well to meet the balance. If GGE is (approximately)
independent ofH, then it actually follows from Eqs (16) and (17) that recruitment
is (approximately) constant independent of the rate of mortality. The argument is
based on the multiplicative rule,

l,(w,w0)=l0(w,w0); (w) = ct(w)
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to gain a factor of p in weight (i.e. p-stage
specific) is known except for the constant
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growth (for low inirial numbers ar which
the Fp-criterion no longer constitutes a
limiting facror for recruirment). I
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Initial number at weight W) (N0)

The exponent, c/H., must remain constant to meet the Fn-balance and hence, H,,
= cH as a result of the change in the mortality rate by a factor of c. Food compe
tition as formulated by Eq. (16) thus stabilizes size-specific recruitment against
fluctuations in the mortality rate. Since F is proportional to N0, it also follows
from Eq. (16) that fluctuations in the amount of food consumed (Fn) will cause re
cruitment to fluctuate by exactly the same mechanism that provides recruitment
stability against fluctuations in N0 in the case of constant F.

The same procedure can be used to elucidate the point C dynamics of the F-re
cruitment curve. The only difference from the situation described above is that H

The recruitment square

NB
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remains constant (H) at this critical point occurring at N0 = E. Recruitment at
point C is

= E lo(pwo,wo)11’ C: Point of max. growth rate (18)

and it follows from Eq. (16) that E increases but N decreases as the rate of mor
tality increases. The C-line for maximum (and density-independent) survival and
the position of the critical point are, thus, sensitive to changes in mortality as
would be expected:

Comment 10
The allometric model with start-density dependent growth derived from the F-criterion,
g0(w,No) = H(No)w1”,paw) qw and hence, 1(w,wo) (w/w0),produces a steeper
descending F-recruitment curve than in the S&C case. The dynamics of point C are the
same in the two situations. We expect that GGE, the gross growth efficiency increases
only slightly when H increases from q (point B) to Hmx (point C) because the rate of fast-
ing metabolism is small compared to the growth rate for larval fish. Recruitment at a
specific initial number (fixed N0) is, therefore, almost constant when the rate ofmortality
changes as it is only moderate changes in GGE(H) that will cause q/H to change slightly
to meet the food requirement in Eq. (16). Howeve it turns our that the mortality-to
growth effect is so strong that F-recruitment actually increases somewhat when the mor
tality rate increases!

Eq. (16) represents but one consistent and simple way of expressing the effect of food
competition. If it is flot so much the total amount of food eaten as C1,, the average rate
of food consumption, that is likely to remain constant, then the situation changes. The
Cpspecific recruitment curve is raised at the B-end compared to the Fp-curve because
there is more food, F(N0)= CT1(No), available at low growth rates. TheC1,-criterion also
stabilizes recruitment against variations in mortality. The response to a change in mor
tality is (now reversed to) the expected one: recruitment increases (slightly) with a reduc
tion in mortality and vice versa. Yet another criterion would be to consider the amount
of food eaten during a specific time to be constant. Age-specific recruitment to meet this
food criterion bears an increasing relationship to the initial number!

Conciusions
The general principles of size based theory are quite simple. The decimation of
riumbers at size is determined by the physiological rate of mortality which equals
the rate ratio of mortality to growth. Integrating the physiological mortality rate
gives the size-specific cumulative mortality. The survivorship is obtained in the
usual mannei taking the exponential of minus the cumulative mortality. If the
mortality rate increases by a factot c, the cumulative mortality increases with the
same factor and hence, age-specific survival (see Ex. 2) and size-specific survival
(in the case of unchanged (or density-independent) growth) change to the cth
power of their initial values. If the mortality rate is constant then the exponential
decay in numbers at age has nothing to do with the rate of growth. Howevei a de
crease in the growth rate will have the same effect as an increase in the mortality
rate on the physiological rate and hence, on the size-specific survival (see Ex. 6.1).
These useful multiplicative rules for the size-specific survival (e.g. Ex. 5) are ex
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pressed in Eq. (11). However, some care is required because a change in the growth
rate may affect the rate of mortality. This is because the shift from a description ifl
age to size, or from size to age is determined by the growth curve. Suppose that
mortality is described as a function of age (Ex. 1), M(age), then the mortality at
size depends on the growth rate (Ex. 6.2). In the more realistic case, mortality is
described by a (decreasing) function of size, i(size), and mortality at age conse
quently depends on the growth rate (Ex. 6.3). These concepts of size based theory
can be applied to any formulation of the vital rates. Two types of growth models
are considered in the present papei VBGE (Ex. 4) and the allometric model (Exs
7 to 10).

In the ciassical (assessment) model with a constant rate of total mortality, Z,
and VBGE, dL/dt = K(Lc,,, — L), numbers at length become (Ex. 4.1),

L -L Z/K
N(L) = N(L0) °° ; Z: constant total mortality (19)

L - L0

Hence, numbers bear a linear relationship to length when the total rate of mortality
equals the growth coefficient, K. This curve for numbers at length actually changes
from a convex shape when Z < K to a concave shape for Z > K. The in between
situation, the straight line for Z = K, represents a balance in the physiological rate
of mortality between the effect of constant rate of mortality and the effect of de
creasing growth rate with increasing length. The dimension of physiological mor
tality is LENGTH-1.If weight is used instead to describe size (Ex. 4.2) then, even
though Z is constant, the physiological rate of mortality changes (because the
growth rate in weight is different from the growth rate in length) and its dimension
becomes WEIGHT’. In Eq. (19), K appears in the denominator of the exponent
in the size-specific survival because the growth rate is directly proportional to K.
This consequence of the multiplicative rule is very important. It explains why it is
the coefficients of the vital rates (here Z and K) that play the most significant role
in size based theory because these coefficients end up in the exponent.

Comment
Length based theory is flot part of basic training because size (incorrectly) never really
was considered to be of great importance for (age-specific) stock assessment and popu
lation dynamics in temperate waters (with the otoliths age-reading technique available).
For example, the Beverton & Holt (1956) Z-equation (Ex. 4.1) for estimating the ratio

Z/K from the mean length in the catch was first rediscovered in the 1970s by Munro
(1974, 1983) in his important work on portable fish trap based assessment which actu
ally caused an opening for tropical fish stock assessment. Introductions to length-based
(or length converted) methods are available today (Pauly, 1984; Sparre et al., 1989) but
it is important to note that methods for estimating Z, such as the length converted catch
curve, can be derived directly from length based theory without reference to age.

For clarification, suppose that the population in the sea (which usually consists of
several age-groups) is in a steady state (obtained after some years with constant annual
recruitment pattern to the fishery (at size, L0 = Lr) and constant coefficients of vital rates;
see e.g. Beyer, 1981), then Eq. (19) still describes numbers at length (for this pseudo-co
hort situation). Using standard notation, the fishing mortality and the catch are denoted
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by F and C, respectively (but only in this and the next Comment). The catch rate, dC/dt
= FN, divided by the growth rate gives the length-based beginning point,

dL K(L_L)L); N(L)N(Lr)l(L,Lr)

Considering this physiological catch rate at the mid-point, L12 = (L, + L2)/2, of a
length class to equal C(L1,L2)/L, the total catch from that length class divided by the
class length (SL), inserting numbers from Eq. (19), and taking logarithms gives the
length based linearized catch curve,

ln[C(Li,L2)/iL] constant + (Z/K — 1) ln(L,— L12)

from which Z/K can be estimated by the linear regression technique. Integrating the
physiological catch rate gives the fundamental (classical) catch equation,

C(L1,L2)
= f N(L1) [1 — l(L2,Li)]; N(L1) = N(L,) I (Li,Lr)

oi the exact (linearized) length based catch curve,

Z rL L’’<ln[C(Li,L2)/(1 - 1(L2,L1))] = a +- ln(L- L1); l(L2,L1)
= LL Lj

which, howevei can only be used in an iterative way. The first estimate of Z must be
used to evaluate the survivorship, I(L2,L), on the left hand side and then, an improved
estimate of Z is obtained from the slope of the regression line (assuming K to be known,
of course). Putting L2 = L or l(L,,L1)= I(oo,Li) = 0 gives the Jones & van Zalinge (1981)
equation for the length based cumulated catch curve,

ln C(L1,L) a + ln(L Li); a constant

This formulation is also useful for comparing the two approaches because the right
hand sides of both the catch curve and the cumulated catch curve are identical.

Eq. (19) describes the decimation of numbers at length of one year-class according
to the classical assumptions. In a more realistic case, the rate of natural mortality
is inversely proportional to length, M (L/L), (but the fishing mortality remains
constant) and we obtain from Exs 4.1 and 4.3, using the multiplicative rule,

L —L Z../K L M!K

N(L) = N(L0) °°

; M : natural mortality (20)
L — L0 L (of infinitely old fish)

where Z denotes the total mortality of infinitely old fish, i.e. the fishing mortality
plus M. The age-specific survival is obtained by inserting length-at-age from the von
Bertalanffy growth curve (see e.g. Ex. 4.4) in Eq. (20). If there is no fishing, then Z
can be replaced by M in Eq. (20). The physiological rate of mortality attains a min
imum at some length because it reaches high values for small fish (due to high mor
tality) as well as for large fish (due to slow growth). For larval and juvenile fish a sim
ple, allometric growth model seems more appropriate because of the problem with a
very rapid decrease in the specific growth rate according to VBGE. Considering the
specific rate of food consumption as a measure of natural mortality (Ex. 10.1) is one
way of avoiding estimating the weight-exponent in the mortality relationship.
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Comment

_________

The minimum of the physiological rate of mortality occurs at L,. = L,/(l + ii + F/M)
where F denotes the fishing mortality. L,. thus specifies the length class through which
the cohort suffers smallest cumulative losses (i.e. maximum survival). Comparing Eq.
(20) with Eq. (19) shows that the major effect of introducing this size-dependent mor
tality model, Z = F + M (L/L), is determined by the last factor in Eq. (20). The im
plications for stock assessment, thus, depend on the size-gaining factor (from the size at
which the fish can be considered fully recruited to the fishery to L-infinity) and on the
ratio of M-infinity to K in the exponent. In some cases there may be a considerable effect
on estimates of gear-selection parameters from catch curve analysis. Howeve we shall
flot go further into stock assessment problems in the present context. The main point
here is, rathei that we can consider eggs, larval fish and small juveniles on one side (re
cruitment studies) and adult fish on the other side (ciassical population dynamics) but
within the same mortality model!

The concept of M being inversely proportional to L is in agreement with the results
of Ex. 10.1 in that we may expect to find a tendency to proportionality between M and
the specific rate of food consumption (i.e. Hw113 in VBGE). In the allometric model (Ex.
10) we considered ni 0.25 as the weight exponent instead of the m = 0.33 considered
here (Ex. 4.3, Ex. 7). A m 0.25 may still be consistent with the simple idea of mortality
being inversely proportional to length because the exponent in the weight-length rela
tionship for larval fish often seems to be doser to 4 than to 3. But whether or not it is
possible to distinguish between, say, 1/4 and 1/3 for the weight exponent in the mortality
relationship, depends on a critical examination of available data, in particular the bias
and uncertainty involved. It may be worthwhile to compile existing data on the matter.
For example, Pauly’s (1980) empirical M-formula, based on data from 175 different fish
stocks,

M 0.9849 L°279 K°6543 TEMP°43; DIM: M(yr), L,(cm), K(yr’), TEMP(°C)

in combination with the Pauly & Munro (1984) empirical formula, K c L2, (where
the coefficient of proportionality is almost constant within closely related fish species),
is perhaps applicable for M,. It also depends on to which degree existing data on natural
mortality reflects the situation of M (rather than a higher M for a smaller size). B&H’s
classical estimate of natural mortality of North Sea plaice refers to fish between 5 and
13 years of age and actually gives M = 0.06 yr (Ex. 4.4). Note that it makes sense to
express M as a function of the sea temperature. We expect that solar energy, and hence,
the water temperature determines the speed of the overall rate of food turnover and
hence, M (cf. Ex. 10.1). It is most likely that more refined models of natural mortality
will involve different constants of proportionality if flot different slopes (for different
groups of animals).

The allometric model has been used as a basis for the examination of age-specific
and size-specific recruitment situations with various types of density-dependent
vital rates (Exs 7 to 10).

The classical recruitment curves represent the result of a first order approxima
tion to (generalized) density-dependent mortality (Ex. 3). Thus, if mortality is a
linear function of the start-density (but otherwise density-independent) then age
specific as well as size-specific recruitment become Ricker curves. The size-specific
Ricker curve is maintained if the linear density-function (as a mortality coefficient)
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instead is moved to the denominator of the growth rate (as a reciprocal coefficient
of growth) because this operation does flot change the physiological rate of mor
tality. Note that the size-specific recruitment curve is always copied to age if the
rate of mortality reaches a constant value at or before the age of recruitment (Ex.
7). These resuits are valid if the terms ‘start-density and ‘Ricker curve’ are replaced
with ‘density-dependent’ and ‘B&H curve’ (Ex. 8). Note that ali of these resuits
are also valid for whatever functions we propose to describe the size-dependent
part of the vital rates. However, age-specific recruitment (in the case of density-de
pendent growth) depends very much on the reiationship that mortality has to size.
Even in the most simple case, with natural mortality inversely proportional to
length, the shape of the age-specific recruitment curve changes dramatically as the
age of recruitment increases. From showing a steadily increasing trend, through
the B&H type of curve, to a max-min type of curve, the age-specific curve ends up
showing resembiance to the Ricker type of curve (see Fig. 7.4).

The major difference between the recruitment situations for start-density de
pendent growth and for density dependent growth is as follows. Density-depen
dency creates a mortality-to-growth effect (which tends to moderate changes and
stabilize recruitment against variations in initial numbers) in contrast to the inde
pendent vital rates in the case of start-density dependency. Tt is, thus, this effect
that is responsible for raising the right (descending) limb of the Ricker size-specific
curve to the stable levei in the B&H type of size-dependent recruitment (Fig. 8.2).
However, the effect of S&C-density-dependent growth is not strong enough to
stabilize recruitment against fluctuations in the rate of mortality.

There is a major difference between size-specific and age-specific recruitment.
Size-specific recruitment is simply proportional to the biomass of the recruits. Age
specific recruitment may consist of many but very small fish. For example, in the
S&C model, the rate of mortality is constant and age-specific recruitment, conse
quently, follows a straight line. However, the biomass of equally aged recruits
(which is more appropriate to compare with size-specific recruitment) shows a
much more complicated relationship to the initial number (see Fig. 8.1).

The most simple size-specific model of the vital rates that appears to explain
present knowledge on early life dynamics is the following allometric model (Ex.
9.4 and Ex. 10),

g(w) = H w1” : rate of growth (dw/dt) at size
(71)

p(w) = q w’” instantaneous rate of mortality at size

where H, q and m are constants. The physiological rate of mortality is, thus, in
versely proportional to weight and q/Hdenotes the constant of proportionality.
The size-specific survivorship is independent of the initial weight, w0, and the ex
ponent, m,

= p_q/H : p-stage specific survivorship (from size w0 to size pw0) (22)

Note that the traditional model of constant mortality is obtained for m = 0 in
which special case growth becomes exponential, i.e. the basis (the density-indepen
dent part) of the S&C model.
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Comment
The weight gaining factor (p) is the most important factor in specifying the size interval.
The theory, of course, can be applied to any selection of consecutive size intervals but
two alternative definitions of p are of particular interest for early life studies. The first
relates to physiological reasonably well-defined stages eg.

— weight at metamorphosis
— weight at onset of feeding —

The second relates to the size ratio between larvae and their prey,

weight of predator
p = 100 (larval fish as predators)

weight of prey

Examples on the use of both types of definitions are given in Ex. 10. The interpretation
of the effect of food competition on the recruitment cutve (as illustrated in Fig. 4) relates
to the second definition.

In specifying the allometric model, it has already been noted that a sensible value of
the exponent m appears to be about 1/4 (Ex. 10). However, the p-stage specific survivor
ship is completely determined by the exponent q/H, the instantaneous rate-ratio of mor
tality to growth. The disappearance of m from the survivorship is, again, a simple con
sequence of the fact that it is flot the mortality rate but the physiological rate (or the di
mensionless, instantaneous rate ratio q/H) which determines the size-specific situation.
The model in Eq. (21), elaborated by multiplying the vital rates with the same but arbi
trary size-dependent function is, therefore, still governed by the survivorship in Eq. (22).
That is a straight line ofp-stage specific recruitment in the case of a density-independent
(cofisrant) value of the ratio q/H.

If the growth coefficient, H, is inversely proportional to the initial number (or a im
ear function of N0), the p-stage specific recruitment curve becomes a Ricker curve
which is replaced by a B&H curve in the case of the equivalent situations of density
dependent growth. However these curves bear no direct relationship to the avail
able food supply or the amount of food eaten. Fig. 4 illustrates the dramatic change
in the recruitment curve that occurs when the total consumption of food is constant
for the stage-specific development of the year-class. The curve shows resemblance
to the case of S&C-density-dependent growth considered ifl Fig. 9.2. The right part
or the B-end is more compressed in case of start-density dependency (see Fig. 10.2).

The two most important aspects of food and size specific recruitment are the
stability of the recruitment curve in the regime of medium initial numbers and the
dynamics of the three domains. The food criterion stabilizes recruitment against
variations in the rate of mortality. In the case considered in Ex. 9.4, the variations
in recruitment (domain II) due to ±50% changes in mortality were reduced by a
factor of about 10 compared to the situation of density-independent (max) growth
in domain I. The position of point C (max. growth) is very sensitive to fluctuations
in the mortality rate. Domairi I becomes narrower when mortality decreases (E
decreases) but point C moves up (N increases). The movements of point B for sta
tus quo in biomass are more restricted because the slope of the B-line (i.e. p’) is
independent of changes in the mortality rate. Point B represents the transition to
domain III where other causes of natural mortality than predation (such as starva
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Fig. 4. Illustration of size- and food-specific recruitment curve. Point C de
notes the critical point of max. growth rate. Point B represents status quo
in biomass. The opening on mid-N0 axis indicates that domain II repre
sents a large intermediate range of stock-sizes (E5/E 10) while the cx
treme range of variation in recruitment is less than, say, a factor of 2. Note
that the position of the critical points, in particular point C, depend on the
amount of food available, the mortality rate and the p-stage considered.

tion) also are considered to play an important role. The dynamics of the recruit
ment curve in domain III are perhaps, less interesting and beyond the scope of the
present work (and the models considered). The shape and the stability of the re
cruitment curve also depend on the type of food criterion that is applied (see Fig.
10.2 and Ex. 10.4).

The basic point of these considerations is that the degree of long-term stability
in recruitment that many stocks appear to show can be explained by what happens
during the first months of life during which the larvae gain a factor of 100 in
weight (while depending entirely on the production of copepod nauplii as food).
Recruitment at medium to high initial numbers is, furthermore, almost unaffected
by even considerable year-to-year fluctuations in the rate of mortality (say,
±50%). Deviations from stable conditions due to year-to-year variations in the
copepod nauplii production available as larval food (causes here presumably also
include variations in hydrographic conditions such as stability of fronts and tur
bulence-dependent contact rates) and other causes that temporarily will change or
cause a breakdown of the overall degree of competition among young fish and in
vertebrates for pelagic food can (in combination with mortality fluctuations) easily
explain the magnitude of observed variability in recruitment for most stocks.

The present strategy for explaining the stock and recruitment problem seems
useful and promising because it is based exclusively on a synthesis of the think tank
provided by the grand old men of fisheries during almost a century. This includes
Hjort (1914), Ricker & Foerster (1948), Ricker (1954), Beverton & Holt (1957)
and Cushing (1975).

c II III

Deosity-deperirterit
growth growth

peadest Density-independent
montality
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Comment
The models considered in this paper are very simple and hence, represent a high level of
abstraction. For example, we do flot deal with actual eficounters between predators, lar
vae and prey organisms or between aggregations (patches) of these ‘particies’ but only
with the average outcome of millions of events for the entire sea per time unit. The oniy
but most important problem is that it is difficult to deal with the ‘average’ without know-
ing the underlying probability distributiofis. The ultimate approach must be a stochastic
one.

The model considerations show the flecessity for a precise and consistent account of
the mechanisms governing food consumption and predation. This really requires a mul
tispecies approach (e.g. Beyer, 1981). Furthermore, we do flot really deal with food com
petition. Comperition must imply that some members get little while others get more of
the limited resource. This is another drawback with the present account — a general and
fundamental inconsistency of the discrete models used in classical fish population dy
namics — which we need to deal with first: the members of a year-class are not identical.
We may, in particular, expect that the heterogeneous composition of a year-class of larval
fish affects its dynamics. This requires a continuous approach and Fig. 10.1 introduces
the very first step.

Fig. 10.1 is stimulated by empirical evideflce which suggests the usefulness of allo
metric equatiofls ifl describirig the biomass spectrum of the pelagic ecosystem. On a log
arithmic body-weight scale, the biomass spectrum should decrease slightly for the small-
er plankton with increasing size (e.g. Sheldon et al., 1972, 1973). Note that the ordinate
in Fig. 10.1 (incorrectly) refers to numbers. It should be a number density. This point
often causes confusion. For ciarification, suppose j(w) is the number density, Le.
i1(w)dw denotes the number of fish with sizes in the ifiterval (w,w + dw). The biomass
density is thus w(w). In a continuous approach we may write, for numbers and biomass
in the small weight interval,

numbers (w)dw = (w)w dlfl(w)
biomass w numbers = (w)w2 dlfl(w)

Tt is (w)w2 that is called the biomass spectrum and if this spectrum only decreases
slightly it means that the absolute slope of the line for number density in Fig. 10.1 is a
little more than two! In the present context, Fig. 10.1 merely serves to illustrate a point
but note that the conclusion, i.e. that mortality rate is proportional to specific rate of
food consumption still hoids if a more elaborate log-normal like preference function
(Andersen & Ursin, 1977) is applied. Biologists usually prefer to use the biomass spec
trum because it is volume or biomass that is measured. However in dealing with the con
cept of mortalities, it is more convenient to work with the number density. Tt was here
that the present work actually began but the cofltinuous approach is flot included here.

One question from the introduction still remains to be answered: How can the re
lationship of density-dependent growth be derived from food competition? It can-
flot! At least flot based on the preseflt type of approach. We have only been able
to obtaifl H as a function of the initial number based Ofi the food criteriofl (Ex.
10). In the S&C type of model, the density-dependency was assumed to be of the
B&H type and we could only determine the food measure, A, as a function of the
initial number based on the food criterion (Ex. 9). The present investigations, at
best, give some ideas on the expected effect of food competition. The theory pre
sented is entirely based on classical theory and a sort of beginning point.
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What is needed is theory development to cope with the biological-physical
mechanisms (e.g. the Rothschild & Osborne (1988) hypothesis) governing, for ex
ample, rates of encounter and food consumption in the sea. This task of theory de
velopment is a tremendous one (Rothschild, 1986). Tt must be done in an iterative
procedure. At present much can be done based entirely on historical data after re
assessing according to size etc. Ali we need to know is probably there somewhere!
Many of the examinations in this study could be continued but then, as a second
step, it is more interesting to apply the present eiements of theory to specific cases.
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Notation
a constant
A population size at half max S&C-growth-coefficient
AB A at critical recruitment point B
b constant; change in growth rate
B biomass of year-class (usually specified by index)
B-line lower limit of recruitment square (window)

designating minimum survivorship
B-point critical recruitment point of status quo in biomass
B0 initial biomass of year-class (at age t0, weight w0)
B1 biomass of year-class at size-specific recruitment

biomass of infinitely old year-class
B(t) biomass of year-class at age t
B&H Beverton & Holt (1957) (BH as index)
c constant; change in mortality rate
C rate of food consumption by year-class
C-line upper limit of recruitment square (window)

designating maximum survivorship
C-point critical recruitment point of max growth rate
C0 cumulative mortality to age-specific recruitment

with constant mortality rate (= i)
C average rate of food consumption by the year-class

to size-specific recruitment
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C(t) rate of food consumption at age t by year-class
C(w) rate of food consumption at size w by year-class
CUMT age-specific cumulative mortality
CUMW weight-specific cumulative mortality
CR-point critical recruitment point in B&H on R&F
e base of natural logarithm;
e eggrndex
E initial number of eggs
EB initial number at point B

initial number at point C
minimum value of E (at zero mortality)

ECG maximum value of E (= EB)
ECR initial number at point CR
Em initial number at local recruitment max
Emax initial number at max recruitment
E112 initial number at half asymptotic max recruitment
f(t) growth curve: weight at age
f1(w) inverse growth curve: age at weight
f1(t) growth curve: length at age
f1-1(L) inverse growth curve: age at length
F total amount of food consumed by year-class to

sizespecific recruitment
total amount of food consumed by year-class to

age-specific recruitment
g(w,.) rate of growth in weight (vital rate): g(w), g(w,N), etc.
g0(w) density-independent rate of growth in weight
g1(L) rate of growth in length
G(w) weight-specific rate of growth at weight w

(specific growth rate, instantaneous growth rate)
G(t) weight-specific rate of growth at age t

(specific growth rate, instantaneous vital rate)
GGE gross growth efficiency (= g(w)/i(w))
h coefficient of anabolism in allometric model
H coefficient of anabolism in VBGE; coefficient of

growth in allometric model
i(w) rate of food consumption at weight w
1(t) specific rate of food consumption at age t
1(w) specific rate of food consumption at weight w
k coefficient of fasting metabolism
K curvature parameter in VBGE curve in length (= k/3)
1(w,w0) weight-specific survival from w0 to w (survivorship)
11(L,L0) leflgth-specific survival from L0 to L (survivorship)

short for p-specific survivorship (= l(pw0,w0))
1 short for density-independent survivorship
1max max size-specific survival (survivorship)
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1mn min size-specific survival (survivorship)
L length (total body-length)
L0 body-length at beginning of size-interval (stage): initial length

length of infinitely old fish
L mean length-at-death above initial length
m numerical value of weight exponent in allometric model

for the instantaneous vital rates
M constant instantaneous rate of natural mortality
M(t) instantaneous rate of mortality at age (natural mortality or

mortality rate or mortality coefficient or vital rate)
M mortality rate of infinitely old fish
N(t) numbers at age (abundance or number of survivors

in the year-class at age t)

N(w) numbers at weight (abundance or number of survivors
in the year-class at weight w)

Na size-specific recruitment (at asymptotic recruitment)
NA relative initial number (=N0/A(N0))
NB size-specific recruitment at point B

size-specific recruitment at point C
N0 minimum value of N at zero mortality
NCG maximum value of N
N0 initial number of fish in the year-class at age t0 and weight w0
N1 size-specific recruitment at weight w1 = pw0

max size-specific recruitment
p weight gaining factor (= w1/w0)
P short for biomass lost in predation;
P P-point
P(t, t0) biomass removed during (t0, t) due to predation
psd particle size distribution
q coefficient of size-specific mortality
Q(t, t0) cumulated total excretion (loss) during (t0, t)
R age-specific recruitment
RB age-specific recruitment at point B
R age-specific recruitment at point C
Rm local maximum of age-specific recruitment
RCR critical age-specific recruitment in B&H on R&F
R&F Ricker & Foerster (1948)
S(t, t0) age-specific survivorship from t0 to t

Smax max age-specific survival (survivorship)
Smin min age-specific survival (survivorship)
S age-specific survival at asymptotic high initial numbers

(asymptotic survivorship)
S&C Shepherd & Cushing (1980)
t age
t0 age at w0 (initial age)
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t1 age at w1
tr age at (age-specific) recruitment

mean age-at-death above age t0

T age of maturation
age at zero length in VBGE (t-zero auxilliary in

assessment terminology)
U(N) generalized density-dependent mortality coefficient
VBGE the von Bertalanffy growth equation
VPA virtual population analysis

(developed by Fry (1949), applied by Gulland (1965), reviewed by eg. Jones (1984))
w weight
w(t) weight at age t

w0 weight at beginning of size-interval or stage
considered (initial weight)

w1 weight at (size-specific) recruitment
W5 egg weight
ÜJ(w0) mean weight-at-death above w0
Wb weight at max biomass
Wm weight at min physiological mortality rate
W weight of infinitely old fish
x variable (auxilliary)
Z total instantaneous rate of mortality (total mortality coefficient, total

mortality rate, total mortality)
Z,,,. total mortality rate of infinitely old fish

fraction of absorbed food lost (in sda etc.)
/3 fraction of food absorbed
y assimilation efficiency
6 numerical value of N-exponent in density-dependent growth

instafltaneous rate of mortality at size w
(mortality or mortality rate or mortality coefficient or vital rate)

instantaneous rate of mortality at length L
T time measured from initial age (time interval t — t)

time required to grow to size-specific recruitment
(ot to gain a factor of p in weight)

Tr time to (age-specific) recruitment (time interval t, — t0)

Note: This list of symbols is flot complete. Several parameters and variables are
specified by indices such as i (inflexion point), c (critical), s (saddle-point), ref
(reference point), max (maximum), min (minimum) and * (new value after a
change in vital rates).
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Examples
Exampie 1: Mean age, longevity and age-specific survival
The survivorship S(t, t0) gives the fraction of fish at age t0 that is still alive at age t.
We, therefore, obtain a general formula for the mean age-at-death of fish above
age t0 by integrating the survivorship, i.e.

f(t0) = t0 + j’S(x,to)dx

In the special but often considered case of a constant rate of mortality, M, we
obtain an exponential life-time distribution, S(t,t0) = exp(—M(t — t0)) and, the con
ditional mean age-at-dearh becomes t(t0) = + 1/Mor M = 1/((t0)—t0) as shown
by Beverton & Holt (1956). Note that it is ‘the lack of memory’ (Markovian) prop
erty of the exponential distribution which ensures that the expected future life
span is constant and independent of the past. Whether we considei say, two week
old fish larvae, one year old juveniles or ten year old adults then — on average —

their life will terminate after 1/M units of time if M is constant. We may consider
fractiles of the life-time distribution as measures of the longevity of the fish. The
mean age-at-death of the fish in the year-class, f(0) = 1/M, corresponds to a sur
vivorship of exp(—l) or the 36.8% fractile. The age at which only 1% of the cohort
is alive (i.e. the 1% fractile) equals the mean age-at-death multiplied by —lnO.01 or
4.61. However, in describing the early life dynamics and the process of recruitment
we are dealing with much smaller survival.

Suppose T = 3 years is the age of (massive) maturation. We know that the sur
vival to maturation is on the order of 10_6 = exp(—13.8) for many species (cf. Ex.
5) because, on average, only two eggs of the total number of eggs produced by an
adult fish survive and develop into two mature fish. The cumulative mortality
through the first three years of life must, then, be about 13.8, i.e.

fM(t)dt = —ln S(3,0) = 13.8 ; T = 3 yr ; S(3,0) = 10

If the rate of natural mortality remains constant throughout life, then the mor
tality level required to explain the one in a million survival must be M = 4.6 yr1
(1.3% d1) giving a mean age of 79 days and an annual survival rate of exp(—4.6)
or 1%. A more realistic distribution of natural mortality should involve a propor
tionally higher cumulative mortality in early life than in the later juvenile stages.
Suppose for a simple treatment of this situation, that the rate of mortality decreases
inversely with age according to

M(t) = b/(1 + ct)

We then obtain the following survival and mean age,

S(t,0)=(1+ct)c; f(to)=to÷lt0; b>c
b—c

One interpretation of this model is that the rate of mortality is inversely propor
tional to the Iength of the fish and that growth in length takes place at a constant
rate. The constant, c, then denotes the specific growth rate in length at age zero.
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We tentatively set c = 9.125 yr’ (2.5% d1) and b = 4c = 36.5 yr1 (10% d-’) for the
rate of mortality at age zero. The mean age-at-death of the fish in the year-class is
less than two weeks (l/(b—c) = 13.3 d). However, 31.6% of the cohort is alive at
this mean age and the rate of mortality has dropped to b—c or 7.5% d°. The sur-
viva! to three years of age is 1.5 10_6 at which time the mortality is 1.29 yr1. Three
year old fish will on average just survive their fourth birthday (f(3) = 4.04 yr).

Table 1.1. Rate of mortality, cumulative mortality and survivorship at age ina simple
model of age-dependent mortality: M(t) = b/(1 + ct) with b = 4c = 36.5 yr*

Age Rate of mortality Cumulative mortality Survivorship
t M(t) CUMT(t,0) = —lnS(t,0) S(t,0)

yr yr1 d1 (dimensionless) (dimensionless)

0 36.5 10.0% 0 1.00
1/12 20.7 5.6% 2.3 0.10
2/12 14.5 4.0% 3.7 0.025
3/12 11.1 3.0% 4.8 0.0086
0.5 6.56 1.8% 6.9 1.0 10
1 3.60 0.99% 9.3 9.5 10-°
2 1.90 0.52% 11.8 7.3 10-6
3 1.29 0.35% 13.4 1.5 106
5 0.78 0.21% 15.4 2.1 10
10 0.40 0.11% 18.1 1.4 10
20 0.20 0.055% 20.8 8.8 10_lo

Table 1.1 gives a more detailed picture of the course of mortality. The cumula
tive mortality is 6.9 during the first six months and 6.5 during the following 2.5
years. Considering that much stock assessment in temperate waters is stil! based
on an assumption of a natural mortality of 0.2 yr’ in the exploited phase, a mor
tality of 1.3 yr1 seems high for a three year old fish. However since we stil have
to explain a cumulative mortality of about 13 at the age of three years, the rate of
mortality for fish older than, say, half a year can only be reduced at the expense of
increasing the rate of mortality in early life. If the rates of mortalities in early life
are higher than suggested in Table 1.1, then they are likely to exceed the specific
growth rate in weight of larval fish and the biomass of the year-c!ass will begin to
decrease already in early life!

It is this delicate balance between the vital rates that determines the changes in
the biomass of the year-class (Jones, 1973). We can hardly expect to gairi much new
insight into this important mass-balance for early life by elaborating on empirical
based age-specific models such as the one presented here. There is a need for devel
oping rational models to describe the early life dynamics of marine fish. The present
paper advocates that such models are likely to be size-specific rather than age-spe
cific. Tt is, apparently, not known at which life-history stage the biomass of a year
class is likely to begin to increase. We know only that the biomass is decreasing dur-
ing the egg- and yolk-sac stages. A sensib!e criterion could be that the biomass at
metamorphosis (when the larvae have gained, say, a factor of 200 in weight) should
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exceed the biomass at the onset of feeding. These criteria are considered in Exs. 9
and 10 after introducing size-specific models in Ex. 4 and going through the few ex
isting elements of size-specific recruitment theory in Exs. 7 and 8.

Exampie 2: Multiplicative aspects of survival to age
The purpose of this example is to recapitulate the usefulness of the basic properties
of age-specific survivorships. Changes ifl the age-specific survival, however, are flot
always that simple to quantify. One example is the change in the age-specific sur-
viva! that will occur due to a change in the rate of growth in the cae of a size-de
pendent rate of mortality (see Ex. 6.3). Other, even more complicated, situations
may anse in the case of density-dependent Vita! rates. For a simple treatment of
such a situation, assume that the rate of morta!ity is a linear function of density,

M(t) = M1 + M2 N(t)

and denote the survivorship from, say, age zero to age t by S. If the mortality co
efficients are changed by a constant factor, M1 = c M1 afid M2 = c M2, then the
new survivorship does NOT equa! SC! The initial rate of morta!ity, M(0), is
changed by a factor of c but this subsequent!y changes numbers-at-age (compared
to the situation before the change) and the new rate of mortality at age t is, there
fore, flot simply the old one multiplied by c. The mathematical treatment of this
linear mortality assumption underlying the Beverton and Holt recruitment curve
(see Ex. 3) is we!l-known and we obtain (cf. the equivalent size-specific procedure
in Ex. 8.2),

S = N(t)/E = S0/(1 + (1 —S0)EM2/M1); S0 = exp(—M1t)

where E is the initial number at age zero (hatching). Note that S0 is the survivorship
in the absence of density-dependent mortality (i.e. M2 = 0). With the factor-c
change of the coefficients of mortality, it is only the survivorship, S, that will
change to the cth power: S0* = 50Crn In the case of a mortality increase (c > 1), the
survivorship thus decreases but flot quite to the cth power of its initia! value (i.e.
SC < S < 5, cf. equivalent sensitivity analysis in Ex. 8.2). Replacing the number
N(t) with SE gives the rate of mortality as an explicit function of age,

M(t) = M(0)/(1 + (1 — S0)EM2/M1) ; M(0) = M1 ÷ M,E

and it fol!ows directly that the increase in M1 and M2 by a factor of c leads to a
smaller relative change in M(t) because of an increase in the denominator (S de
creases).

The fact that 5* S’ in the case of density-dependent mortality does flot mean
that the power-ru!e is flot valid but rather that it is difficult to create two situations
in which the rate ratio of mortality is constant throughout the entire age-interval
considered. With this in mmd, we can proceed to consider the app!ications of the
power-rule in simple cases of constant mortalities or situations in which the rate of
mortality is described by, e.g., an explicit function of age (or time) such as in Ex. 1.
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2.1. The power rule
Suppose for a species such as the Atlantic herring (Ciupea harengus harengus) that
one egg in 100 develops into a juvenile fish under ‘normal environmental condi
tions’. Favourable survival conditions in one year may, perhaps, reduce the normal
mortality rate by, say, 25% thereby increasing the survival from S1 = 0.01 to S1075
= 0.0316. In another year; mortality may be 25% higher than usual producing a
survivorship ofS1125 = 0.00316. Thus, year-to-year variations in mortality of ±25%
in the egg and larval stage alone will cause recruitrnent to vary by a factor of 10 (cf.
Houde,1987). If the survival from the (ca. 9 month) juvenile stage until age one year
is 2% under normal conditions (i.e. S2 = 0.02), then the survival from egg to one
year of age becomes S = S1 S2 = 0.0002. Recruitment will vary by a factor of more
than 70 (i.e. S 050) due to year-to-year variations of ±25% in the mortality rate
during the first year of life. If fishing or a new predatory species affects the juvenile
stage by a mortality rate of, say, 1.2 per year then the survivorship until one year
of age will decrease by a factor of exp(—1.2 . 0.75) = 0.41 (9 months = 0.75 year).

The ciassical assumption of a rate of natural mortality of about 0.2 per year
gives an annuaFsurvival on the order of 80%. Raising the mortality on age group
one to about 1 yr1 (as has been recently done in the stock assessment of North
Sea herring) reduces annual survival to ca. 36% (see Fig. 2.1). Recruitment as cal
culated by VPA, therefore, more than doubles because we still need to explain the
same spawning stock size as with the low rate of mortality. The long-term mean
of ca. 8 10 one year old North Sea herring before the collapse of the stock in the
mid-seventies (e.g. Beyer, 1981) is actually increased by 1010 recruits due to this
change in juvenile mortality. Fig. 2.1 also illustrates the multiplicative rule with a
fishing mortality of about 0.3 yr’ (simulating fishing during mid-recovery in the
early eighties). The effect in terms of absolute reduction in survival is small in the
M = 1 case because most of the fish ending in the trawi would had suffered natural
mortality in any case.

Fig. 2.1. Annual percentage survival and mor
tality (dark area) for adult and juvenile without
fishery (top part) and with a fishery that by it
seif would remove ¼ of the population.

Aduits Juvenies
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The general rule of the effect of a change in mortality is that x% increase in the
rate of mortality causes the survivorship to change by a factor equal to the initial
survivorship to the power of x/100, i.e.

M/M = 1 + x/100 produces S/S = Sx1b00

where the star-index again denotes the change. In Ex. 1, we considered M(t) =

0.10/(1 + 0.025t) where t denotes the age in days. If the constant 0.10 is changed
by ±25%, then the survivorships to three months, one year and three years of age
will vary by factors of 11, 103 and 816, respectively. If age zero denotes hatching,
then in stock and recruitment considerations, the survivorships in Ex.1 should be
multiplied by the survivorship through the egg stage, say, exp(—0.10.14) or 0.25
for two weeks with a daily mortality of 10%.

The power-rule applied to size-specific survivorships is considered in Ex. 5. Ex.
6 deals with the effects of changes in the rate of growth on the survivorships.

Example 3: The Ricker type and the Beverton & Holt type of recruitment curves
Ricker(1954) proposed that the instantaneous rate of mortality was constant in
time and could be expressed as a linear function of E, i.e.

M(t)=M1+M2E t0tt ; Tr=tttO

where the egg-density dependent term accounts for cannibalism of young by adults
or for predation when the abundance of predators can be considered proportional
to E, the egg-production of one of its prey. The survival becomes exp(—M1Tr — M2
Tr E) which gives rise to the dome-shaped Ricker type of recruitment curve:

• R = c1E exp(—c2E)

where c1 = exp(—M1T), the survival in the absence of cannibalism (M2 = 0) deter
mines the steepness of the ascending left limb. Maximum recruitment of
0.368c1/c2occurs at an egg-production of 1/c2 and c2 = M2 also determines the
steepness of the descending right limb. The infiexion point occurs at E 2/c7 or
at twice the egg-production of maximum recruitment and recruitment is reduced
to 0.736 of maximum recruitment (i.e. 26.4% reduction).

Cannibalism is a very direct population-regulating mechanism and it is quite
apt to exist undetected (Ricker, op. cit. p. 613). Ricker’s opinion was that canni
balism would prove to be important in only a minority of populations. However,
the Ricker recruitment curve may also appear under quite different assumptions as
will be discussed in Ex. 7.

Beverton & Holt (1957) proposed an egg, larval and juvenile mortality rate
varying linearly with density,

M(t) = M1(t) + M2(t)N(t) ; t0 t tr

and they considered the pre-recruit phase to be split into any number of stages dur-
iflg which the mortality coefficients (M11,M27) are constants. Deriving the survivor
ship produces the Beverton and Holt type of recruitment curve:
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R = 1/(b1 + b,/E)

where 1/b2 is the survival in the absence of the density dependent mortality (M2(t)
= 0). The curve rises to an asymptotic level of 1/b1 which depends on ali the M1s
and the M2s (see B&H op. cit. p.49). The mortahty coefficient, M1, relates to pre
dation and factors such as temperature, wind and currents. If, for example, the
number of predators is changed by a factor of c, then, in a first approximation, b1
is unchanged but b2 is changed to b2c.

Beverton and Hoit considered severe competition for food among young fish
to be the most likely candidate of compensatory mortality and the idea was to ex
press this effect by the M2s. Tt is to be expected that competition for food ulti
mately may lead to death either directly from starvation or indirectly from debil
ity due to insufficient food. These types of starvation events are particularly likely
to occur during the early larval stages (e.g. Hjort, 1914; Jones, 1973 and
Theilacker, 1986). Clearly, it is practical that a larval fish, which is constructed
to grow at an enormous rate, is poorly adapted to situations in which fast growth
is impossible (Jones, 1973). However, although larval deaths due to insufficient
food undoubtedly occur frequently in the sea, it is less obvious that a starvation
induced mortality in early life shouid always play the major role in reguiating
year-ciass strength. Jr seems much more obvious to begifi the investigation of the
possible causes of recruitmeflt stability by considerifig the immediate effects of
competition for food in terms of density-dependent growth. This idea goes back
to Ricker & Foerster (1948) and its quantification requires another model ap
proach using body-size instead of age as the key variable. We shall deal with this
type of size-structured analysis in the foliowing examples and in Ex. 8, how the
B&H recruitment curve may occur under quite different assumptions is discussed.
The basic point here is that density-dependent mortality caused by starvation may
be considered as the extreme outcome of density-dependent or food-limited
growth.

Exampie 4: Mean size, Beverton & Hoit theoiy and size-specific survival
The simple Beverton & Holt (1957) theory of fishing with constant parameters still
constitutes the fundamental element of most fish stock assessment. Tt seems sensi
ble to use this theory as a general starting point in illustrating the effects of con
sidering the survival to length (Section 4.1) or weight (Section 4.2) rather than to
age. However, the assumption of a constant rate of natural mortaiity throughout
life appears basically wrong particularly ifl juvenile life and the suggestion is made
that predation mortality is inversely proportional to the length of the fish (Section
4.3). This amendment to the classical theory must be accompanied by a change of
the power in the metabolic growth model (Section 4.4) in order to create a simple
and more promising beginning point for modelling growth and mortality ifl the
early life of marine fishes.
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4.1. Mean-size and B&H theory in length
The weight-specific survivorship gives the fraction of fish at size w0 that attains
size w. The mean size-at-death of these fish above size w0 is obtained by integrating
the survivorship,

ü7(w0) = w0
+ f 1(x,w0)dx

WO

For a steady state situation, f(t0) in Ex. i and iVw0) also express the mean age
above age t0 and the mean size above size w0 in the total population.

Suppose the dynamics of the year-class are described by the B&H (cohort)
model. The fundamental elements of this model are a constant rate of mortality and
the von Bertalanffy growth equation, i.e. using length as the measure of size,

IL1(L) = M
g1(L) = K (L — L)

and we obtain the length-specific survivorship from Eq.(8), replacing w by L,

r__L1M/K
11(L,L0)

= ; L0 L < L,
L L — L0 j

The mean length-at-death above L0 is

L=L0+f11(x,L0)dx=L0÷L—L0
Lo 1+M/K

ot M/K = (L, — L)/( L — L0). This is the famous Beverton & Holt (1956) equation
used in tropical fish stock assessment for a steady state population to estimate total
mortality in units of K from the mean length above L0 in the annual catch. In this
application, L0 denotes a size at which the fish can be considered fully recruited to
the fishery in question.

The interpretation of the formula is that the average length depends on the po
tential growth span (Lc, — L0) and on how fast the fish grow (K) relative to the rate
of mortality (M). The survivorship to the mean length-at-death becomes indepen
dent of L0,

/ Jvl’K \M/K
11(L L0) = I / I (1 + K/M)_M/K

\i+M/KJ

and it decreases towards a minimum of exp(—1) or 36.8% for increasing values of
M/K. As an example, we may consider North Sea plaice. B&H (1957) estimated
K = 0.095 yr1 and L = 68.5 cm from size-at-age of adult plaice. Fish of length
10 cm (ca. i year of age) will, on average, attain a size of 28.5 cm if M = 0.1 yr1
but only 15 cm if M = 1 yr1. The survival to the mean length-at-death is 50% if
M = 0.1,38.5% ifM = land 36.8% ifM = 36.5 (10% d’). Larvae of length 5 mm
will obtain a mean length-at-death of only 6.77 mm with a daily mortality of 10%.
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4.2. B&H theory in weight
Now returning to weight, the von Bertaianffy growth equation (VBGE) reads

g(w) = Hw213 — kw = 3Kw213 (W’3 — w”3) ; K = k/3 ; W = (H/k)3

and we obtain the weight-specific survivorship from Eq.(8),

r H — kwih/313MIk r W,j’3 — w1173 1M/K ÏG(wi)13M/k fz’ ‘M/k

l(tt’1,tv0)i =I i I =1 ILH—kwo”’J LW0o(3woll3J LG(l-V0)J \W0

where G denotes the specific or instantaneous rate of growth, i.e.

G(w) = Hw113 — k = k [(W /w)”3 — 1]

Note that, since body-weight is considered to be proportional to the cube of
body-length in the B&H theory, resuits in weight may be directly transiated into
results in iength or vice versa. Age-at-size, t = f(w), is obtained from Eq.(10), in
tegrating 1/g(w),

i / Wj’ — w’13 \ 3 / H — kw113
T=t—t0=——- int 1=—— lnI

K \W,j’3—w01/3J k \H—kw01/3

In the case of North Sea plaice, B&H estimated k = 0.285 yr and H = 4.05 g113
yr (W = 2870 g). Suppose w0 = 0.5 mg at the onset of feeding. According to this
model, it takes the plaice larva 106 days to grow to a size of 0.1 g hereby increasing
its body-weight by a factor of 200. Suppose the rate of mortality is about 11 yr1
or 3% per day. The survival across the size interval is then 4.15%. The specific
growth rate decreases from 14% at first feeding to 2.3% per day at weight 200w0.
With a mortality rate of about 3% per day, the biomass of the year-class begins to
deciine at a body-weight, Wb, of about 0.05 g,

Wb = W /(1 + M/k)3 ; G(Wb) = M in B&H theory

Thus, the specific growth rate drops to the level of naturai mortality already at a
weight of ca. 100w0which is more than 62000 times smaller than W,. One of the
probiems here is that the mortality rate is flot likely to remain constant when the
plaice larvae increase in weight by a factor of 200 in the course of about 100 days
(see below and Ex. 7.3). We note that the growth rate continues to increase until
the fish has attained a weight Wm which is only about 2.5 times smalier than W,

Wm = 8/27 W ; MAX g(w) or MIN (Mig) at Wm in B&H theory

If M = k/2 or 0.143 yr in the case of adult plaice, then Wb Wm and the
biomass of the year-class attains its maximum at body-size 0.30W or 850 g, the
point of inflexion at the sigmoidal growth curve.

Note that Wm occurs at 2/3 L and designates the weight at maximum survival
across a small weight interval because L(w)/g(w), the physiological rate of mor
tality, here attains its minimum value. If length is used as the measure of size, then
the physiological rate of mortality does flot attain its minimum value at 2/3 L!
The convex shape of the von Bertalanffy growth curve in length creates a concave
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shape of the physiological rate of mortality at length. The maximum survivorship
across a small length interval with VBGE, thus, occurs at the smallest length.

4.3. Mortality inversely proportional to length
Suppose natural mortality decreases with increasing body-size. There is empirical
evidence to support such an effect and a power function of size seems to produce
the trend (e.g. Peterson and Wroblewsky, 1984). Empirical evidence also indicates
that G and M are closely related in early life (Ware, 1975). Mass balance consid
erations for the pelagic ecosystem further indicate that predation mortality in a
first approximation may be considered to be proportional to the specific rate of
food consumption (see Ex. 10). This suggests the following extension of the B&H
theory:

(w) = qw-113 = M(W/w)”3; M q/W113 = qk/H

where q is a constant and M denotes the rate of natural mortality at size W.
That is, that the rate of mortality of very old fish is considered to be inversely pro
portional to W”3 H/k or to L. Now the biomass of the year-class is max
imised at a body-weight of

Wb = ((H — q)/k)3 = W (1 — M lk)3 ; G(Wb) = (Wb)

where G denotes the specific rate of growth in VBGE. The physiological rate of
mortality, /g, attains its minimum value at (see Fig. 4.1)

Wm = 27/64 W ; MIN (/g) at Wm

Suppose M 0.5k. Then for plaice, M = 0.14 yr’ and q 2.0 g”3 yr1 and
the mortality rate decreases from 6.9% at first feeding (G = 14%) to 1.2% per day
(G = 2.3%) when the plaice larva has gained a factor of 200 in weight. Thus, the
specific growth rate is about twice the rate of mortality in early life and will grad
ually approach mortality until the rates become equal at size Wb = Wc/8 = 360 g.
The survival to size w is obtained from Eq.(8) by integration,

r Hw113 — k 13Mk r w”3 — W’31M/K f G(w) ‘3q!H
1(w,w0)

= L Hw0113
— kj = Lwo” —

W113j = G(wo))

Note the three different ways of expressing the power. With q = 2 and w0 denoting
the size at first feeding the survival to w1 = 200w0 becomes 7%. The effect of in
troducing the size-dependent mortality is most easily interpreted by expressing
(w) by the form

(w) = (q/H) G(w) + M ; q/H = M/k

Now, it follows directly from the multiplicative rules that the survival to age t is

S(t,t0) = l(f(t),w0)= (w/w0)_It exp(—M(t — t0))

where w = f(t) is the weight-at-age obtained by VBGE and the initial conditions
w0 f(t0). If mortality is constant and equal to M, then the survival to age equals
the exponential factor and the survival to size is given by the expressions for i in



SIZE-BASED RECRUITMENT THEORY EXAMPLES 87

(‘iw

(5

>

KW,

256 M,
81 KW

Weght

M,

Fig. 4.1. Vital rates at weight when the rate of mortality is inversely proportional
to length in the classical B&H model. The rate of growth (VBGE) attains a max
imum at size 0.296W, the point of inflexion at the sigmoidal growth curve.
Mortality approaches a minimum value denoted by M00. The physiological rate
of mortality attains a minimum at weight 0.422W, the weight of maximum
survival across a small weight interval. An example of parameter values for this
size-structured extension of classical theory is K 0.1 yr1, M 0.1 yr1 and

3 kg for North Sea plaice. The very high size-specific vital rates for the
early life stages are included in the same picture although they are not visible in
this figure. Actually, the entire first year of life with body-weights from Ca. 0.5
mg to 10 g ‘disappears’ from the graph and is virtually represented by the y-axis
in this figure.

the preceding section with M M5(5. With mortality inversely proportional to
length, the survivorships are reduced by the weight-gaining-factor to the power of
—q/H. In the example with North Sea plaice, q/H 1/2 and the survival to gain,
say, a factor of 100 in weight is reduced to 1/10 of the survival in the case of con
stant mortality.

Note that Wm occurs at 3/4 L, and thus determines the size at maximum sur
vival across dw. If length is used instead as the measure of size then the physiolog
ical rate of mortality attains its minimum value at 1/2 L!

In case of North Sea plaice, Wm = 1210 g and the maximum biomass occurs at
a smaller weight Wb if M/K> 3/4• Perhaps M/K = 1.5 used above may be re
garded as a qualified guess since Beverton and Holt (1959) found values between
1.5 and 2.5 for the ratio of natural mortality to K. Suppose, however, M/K = 3/4,

then the specific rate of growth continues to exceed the rate of mortality until the
fish attains the size Wb = Wm. For plaice, we then obtain M, = 0.07 yr1 (or q = 1)
and the mortality at size W0 = 0.0005 g is reduced to 3.4% per day. After gaining

8 27
27

w
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a factor of 200 in weight, this rate of mortality is further reduced by a factor of
200h13 to 0.6% per day. The critical power q/H = M /k = V3 M/K is reduced
by a factor of two to ¼ and the fish must gain a factor of 1002 = 10000 in weight
for this weaker size-dependent mortality to reduce the survival to 1/io of the value
obtained in the case of size-independent mortality, M = M.

4.4. B&H theory and early life dynamics
The major problem with applying the von Bertalanffy growth equation to larval
fish appears to be the rapid decrease in specific growth rate. The estimation of the
growth parameters is usually based on mature fish and the later juvenile stages.
For North Sea haddock, B&H (1957) obtained k = 0.60 and H = 6.39 (W = 1209
g) which gives a haddock larva of 0.2 mg wet weight a specific growth rate of 30%
d’ at the onset of feeding. When the larva has increased its weight by a factor of
1000, the specific growth rate has dropped to 2.8% d-’. North Sea herring, assum
ing k = 1.38 and H = 8.83 (Ursin, 1979) at the onset of feeding (w0 = ‘/2 mg), should
also start to grow by 30% d-’ decreasing by more than a factor of six to 4.8% dz’
at 200w0 according to the VBGE. However, larval herring in the North Sea and in
the laboratory are reported to grow by 10% d1 at the most (Kiørboe et.al. 1987,
1988). This problem cannot be solved by selecting another set of (H,k)-parameters
for early life since it is the weight-gaining-factor to the power of _1/3 that causes
the rapid decrease in the specific rate of growth.

The second problem consists of determining where the growth curve should
start. The displacement of the growth curve that provides the best fit to size-at-age
data for larger fish usually gives quite meaningless sizes for the fish larvae. B&H
obtained in this way the weight at birth to be 1.19 g for plaice and 8.64 g for had
dock and such weights give specific growth rates of less than 1% d1. Although the
VBGE is useful for illustrating various aspects of size-structured population dy
namics, these problems show the need for another metabolic model in describing
growth in early life.

The constant rate of mortality constitutes another problem in applying the
B&H theory to the juvenile stages. The assumption of mortality being inversely
proportional to body length appears to be a step in the right direction. To illustrate
the situation from a mortality point of view, we may again use North Sea plaice as
an example. First, we consider the adult phase and Beverton and Holt’s (1957) es
timate of a cumulative mortality of 0.8 from age 5 to 13 years.

The cumulative mortality, CUMW, across a size-interval (w1,w2) is obtained
from the size-specific survivorship:

M /
00 I 1 00CUM\V(w,,w1)= —ln l(w2,w1) = ln IK \ w,” —

and inserting w = f(t) using the standardT0-notation in fish stock assessment:

w”3 = Wj’3(1 — exp(—K(t — T0))) ; L x w’13 ; L = w = 0 for t = T0

gives the cumulative mortality, CUMT through the age-interval (t1,t2)
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CUMT(t2,t,) = —in S(t2,t,) = ln(
exp(K(t2— T,)) —1

K \ exp(K(t, — T,)) — 1

from which we obtain M = 0.06 yr1 using the B&H estimates of K = 0.095 yr’,
T0 = —0.8 15 yr and CUMT(13,5) = 0.8. Note that this estimate, M/K = 0.6, is
ciose to M/K = 3/4 which produces maximum year-class biomass at the size of
minimum physiological rate of mortality.

Now, suppose this combined VBGE and size-dependent mortality model of =

0.06(2867/w)1/3= 0.85w-”3is valid for the juvenile stages. Then, the rate of mor
tality at the onset of feeding (0.5 mg) is 179M or 11 yr’ and decreases to 6.6M
or 0.4 yr’ at size 10 g which is attained at about one year of age according to the
growth curve above used by B&H. The rate of mortality is reduced to 2.4M or
0.15 yr’ when the fish become fully mature, say at size 200 g or at almost 5 years
of age according to the adult growth curve. However, the cumulative mortality for
the juvenile stages apart from the egg- and yolk-sac stages is only 3 = CUMW
(200,0.0005). That is, 5% of first feeding larvae become mature fish! But we know
that the cumulative mortality must be about 13 to explain the survival of one in a
million.

Note that the age-interpretation of the size-specific cumulative mortality re
quires a specification of the growth curve. If feeding commences at, say, age two
weeks, then the growth curve must be dispiaced to give weight w, = 0.0005 g at
age t0 = 0.0385 yr:

w’/3 = 9V’’ —
(‘71/3

— w0113) exp(—K(t — t0))

Thus, CUMW = 3 equals the cumulative mortality to age ca. 5.5 years, the time
required to grow to size 200 g according to this growth curve. With the growth
curve for adult fish (w0 = 0 and t, = T0), the cumulative mortality to age 4.8 years
or size 200 g is only 1.3! This is but another illustration of the importance of ap
plying an accurate description of growth particularly for the juvenile stages be
cause of size-dependent growth. The displacement of the growth curve by Ca. 3/4

year along the age-axis to fit adult growth causes the weight at birth to increase
to 1.19 g at which size the rate of mortality has dropped to 0.8 yr’ and CUMW
(200,1.19) = 1.3.

The critical factor in determining the cumulative mortality is q/H. In order to
see this, it is convenient to use the mixed size-age expression for the survivorship
from the preceding section. That is

q w1
CUMW(w,,w,) = CUMT(t,,t,) = — ln —+ M(t, — t,)

H W0

where the first term determines the contribution due to the size-dependent part of
mortality. The second much smaller term represents the contribution from M,
the size-independent part of mortality. During the first year of life, the logarithmic
weight-gaining-factor for plaice is Ca. ln 20000 = 9.9 and q/H must be on the order
of 0.8 to 0.9 to explain a cumulative mortality of about 9. This gives M/K 2.5
and M 0.25 for plaice (K = 0.095). If K = 0.20 as for North Sea haddock, then
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M 0.5. A K = 0.46 as for North Sea herring gives M 1.2! The critical ratio,
q/H, can be interpreted here as the instantaneous rate ratio of mortality to growth:

q 1 M = (w)
[1- (w/W)1’3]

H 3 K G(w)

Exampie 5: Recruitment variations in size-specific theoiy
A cod spawns between half a million and five million eggs per year. Let us say (fol
lowing Ursin (1982)) that a mature female on the average lays two million eggs in
its short lifetime under heavy fishing pressure and that the number is forty million
eggs under light exploitation. The number surviving until maturity in both situa
tions is around two, say from one to ten. Let’s say, for this example, that a strong
year-class of North Sea cod is achieved when one fish in one million survives to
maturity. The same order of survival probability, i = 10, governs North Sea plaice
(Beverton, 1962). If the growth rate decreases by 10% (i.e. b = 0.9 in Eq.(11)), then
it takes the fish 11% more time to reach the size of maturity with a reduced chance
of survival of 0.215 10-6 assuming an unchanged rate of mortality (i.e. c = i in
Eq.(i1)). This weak year-class is, thus, a factor of 4.6 smaller than the strong year
class. If, instead, growth is only reduced by 5% but happens to coincide with a si
multaneous increase in mortality of 5% (i.e. b 0.95 and c = 1.05), then the ratio
of year-class strengths becomes 4.3. Hence, variations in growth and mortality
rates on the order of a few percent during the juvenile stages can explain a five fold
variation in year-class strength which is the order of magnitude observed for North
Sea plaice and cod.

In this cod example, we have considered the variations in recruitment to the
adult stock that would anse from small but persistent changes in growth and mor
tality when the cod is gaining a factor 106 or 10 in weight during the first ca. three
years of life. Clearly, the effect of annual changes in growth and mortality rates on
the recruitment variations will be smaller if these changes only are considered to
take place at some part of the juvenile stages. According to the multiplicative rules,
it becomes entirely a question about the magnitude of the survival. The smaller the
survival, the greater the effect of changes in the vital rates on recruitment varia
tions. Houde (1987) gives some examples along these lines and it may be of interest
to give a simple but general formula for calculating the recruitment variations. It
follows from Eq. (11) that recruitment to a certain size will vary by a factor of

—400x

Ratio of year-class strength at size = [Size-specific survivorshipj (100 + x)( WO -x(

where x denotes the percentage (opposite) changes in growth and mortality rates
that are considered to produce good and bad year-classes. For example, if x = 5%
then the ratio of a good year-class (b 1.05 and c = 0.95) to a bad year-class (b =

0.95 and c = 1.05) becomes the survival to the power of —2000/(105.95)
—0.2005. In the case of a survivorship of 0.01 for the larval stage of Atlantic her-
ring (cf. Ex.2), recruitment to metamorphosis will vary by a factor of 2.5 due to
± 5% changes in the vital rates from the onset of feeding. If these changes occur
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during the entire first year of life and if the herring, under normal conditions, at
tains a length of, say, 10 cm at one year of age (i 0.0001), then recruitment to
this size will vary by a factor of 6.3. Table 5.1 gives some further results.

Table 5.1. Ratio of year-class strength at size due to ±5% to ±25% changes
in the unknown growth and mortality rates that produce a given size-specific
survivorship.

Ratio of year-class strength
Size-specific due to a percentage change in vital rates
survivorship ±5% ±10% ±15% ±20% ±25%

0.1 1.6 2.5 4.1 6.8 12
0.01 2.5 6.4 17 46 136
0.001 4.0 16 69 320 1600
0.0001 6.3 41 290 2200 18000
0.00001 10 105 1200 15000 215000
0.000001 16 270 4800 100000 2500000
0.0000001 25 670 20000 680000 29000000

Recruitment to North Sea haddock varies by a factor of 100 but that could be
explained alone by occasional 20-25% annual changes in the vital rates during a
period in early life that under normal growth and mortality conditions is charac
terised by a size-specific survivorship of 0.01. Tt could also be explained by a 10%
change in the vital rates from first feeding to that juvenile size at which only one
in 100,000 survives under average conditions. However, North Sea haddock pre
sent an extreme example of recruitment variations. Very few commercially impor
tant fish stocks worldwide vary by a factor of more than 50 in recruitment
(Rothschild, 1986). The usual situation is that recruitment to the age one year
varies within 25-50% of the long-term mean — see also Fig. 1. This corresponds to
a factor of only 2-3 in normal annual recruitment variation. Tt appears from Table
5.1 that we have more reason to be astounded at the stability of recruitment than
at its variability.

Exampie 6: The effects of changes in the rate of growth on survival

The question of whether or not a change in growth may affect mortality needs
some consideration. As a basis, we first illustrate the fundamental impact of a
change in the rate of growth on the size-specific survivorship — created by the re
lated change in the time required to grow through the size interval considered.
Thus, the changes in the survival considered in Section 6.1 are caused solely by
changes in growth and not by simultaneous changes in the rate of mortality (but
see Table 5.1 for clarification of the intensive effect of simultaneous and opposite
changes in the vital rates). Section 6.2, then, deals with the additional effect on
the survival that are caused by mortality changes at size induced by growth
changes in the case of an age-dependent rate of mortality. The opposite situation
dealing with the effect of mortality changes at age caused by growth changes in
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the case of a size-dependent rate of mortality is described in Section 6.3. These
simple situations indicate that the sensitivity of size or age-specific recruitment
to changes in the growth rate during the larval stage is very much related to the
particular way in which the rate of mortality depends on the characteristics of
the fish (e.g. size, growth rate or age). The situation is even more complicated
when the vital rates depend on the number of fish in the year-class (see Ex. 7
and Ex. 8).

6.1. The effect of the power-rule for a change in growth
The relative effect of a change in the growth rate on the survival through a size in
terval increases with decreasing survival. The percentage change in survival is ac
cording to Eq. (11):

(l/1 — 1)100 = (1(1/b)—!
— 1)100 = (1_h/(1 +100/x)

— 1)100

where b = i + x/i00 denotes the constant factor of change in growth rate through
out the size interval in question. For example, a survival of 0.1 would increase by
58% if growth increases by 25% but a survival of, say, 0.01 would increase by
150%, and I = 0.001 would increase by almost 300%! Tablé 6.1 gives such per
centage changes in recruitment to a certain size as a function of the original sur
vivorship for various percentage changes (x) in the growth rate.

Table 6.1. Percentage changes in recruitment at size due to —25% to ÷25% changes in the
unknown rate of growth that produces a certain size-specific survivorship assuming the un
known rate of mortality is unchanged.

Percentage change jo survivorship
Survivor- due to a percentage change in the rate of growth

ship —25% —10% —5% 5% 10% 25%

0.15 —47% —19% —9.5% 9.5% 19% 46%
0.10 —54% —23% —11% 12% 23% 58%
0.05 —63% —28% —15% 15% 31% 82%
0.01 —78% —40% —22% 25% 52% 150%
0.005 —83% —44% —24% 29% 62% 190%
0.001 —90% —54% —30% 39% 87% 300%
0.0001 —95% —64% —38% 55% 130% 530%

In case of a growth reduction of, say, 25%, the recruitment to a certain size will
decrease by 54%, 78% or 90% if the survival to that size before the growth reduc
tion was 0.1, 0.01 or 0.001 respectively.

The survival during the early life history stage from size at first feeding to size
at metamorphosis is believed to be in the order of a few percent for many marine
fish (Houde, 1987). Thus, the survival that is characteristic for larval fish may be
1, 5 or 10%. The percentage change in such a size-specific survivorship against x
(the percentage change in growth) is given by a row in the table and represents a
sigmoidal curve. Each of these curves starts at —100% (i.e. 1 = 0) when growth is
zero and approaches an asymptote of (1/1 — 1)100% (i.e. 1 = i) at very high
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growth rates. The point of infiexion occurs at b = _1/2 lnlor x1 = —100 —50 lnl. The
curve based on a survival of i = exp(—2) or 13.5% has, therefore, its infiexion point
exactly at x1 = 0% (or b1 1). Since the domain of infiexion determines the part of
the curve with maximum slope, we may say that x = 0% characterizes the most
sensitive part of a 13.5% survival curve with respect to the impact of changes in
growth on relative recruitment. Curves based on survival greater than 13.5% ex
hibit infiexion at a growth reduction (i.e. b1<1 or x<0%). Survival less than
13.5% produce curves with infiexion occurring at a growth increase. For the 10%
curve which is represented by the second row in Table 6.1, the point of inflexion
has moved to x1 = 15% and the effect of a small percentage growth increase is
slightly higher than the numerical effect of the same percentage growth reduction.
For the 5% and 1% curves (represented by the third and fourth rows), inflexion
occurs at growth increases of 50% and 130%, respectively. As a rule of thumb, the
percentage change in survival is —xlni where x denotes a small percentage change
in growth. This linear approximation to the rows in Table 6.1 in the neighbour
hood of x = 0% is, of course, best for i 13.5%, i.e. when the point of inflexion
is x = 0%. If, for example, 1=0.01 then the slope of the curve at x = 0% is —lni=
4.605 but the maximum slope at x = 130% is almost three times higher (11.75)
and the approximation, thus, underestimates the increase in survivorship in the
case of a growth increase.

Wc note again that the relative changes in the size-specific survival considered in
Table 6.1 are caused only by relative changes in the unknown rate of growth and
flot by direct or indirect changes in the unknown rate of mortality at size.

6.2. Survival to size with age-dependent mortality
If the rate of mortality is an explicit function of age, M(t), then the survival to a
certain age remains constaflt independent of changes in growth. However, the im
pact of a change in growth on the survival to size is flot described by Eq. (11) or
Table 6.1 in this case because p(w) will change as well! To investigate this point
further, we consider the rate of mortality at size w before and after the change in
growth

pw) = M([’(w)) ; t = [-1(w) d[1/dw = 1/g(w)

= M(f’(w)) ; t = fz(w) ; d[1/dw = 1/g (w)

Here [_1 denotes the inverse function. That is T1 = t1 — t0 = f’ (w) — [‘ (w0) is the
time required to grow through the size interval (w0,w1)as given by Eq. (10). The
star designates the change. A growth increase, g(w) > g(w), implies that size w is
attained at an earlier age, f,’ (w) <[1(w), and the rate of mortality at size w be
comes greater than the initial, (w) > (w), if M(t) is a decreasing function of age.
The physiological rate of mortality, —dlnN/dw = (w)/g(w) will, therefore, flot de
crease by a factor of 1/b due to an increase in growth rate by a factor b because the
simultaneous increase in (w) provides a compensatory effect. The combined effect,
however, must be that the survival to a certain size will increase because that size
now is reached at an earlier age at the profit of a smaller cumulative mortality.
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Suppose the rate of growth in length is constant and mortality decreases inverse
ly proportional to a linear function of age as in Ex. 1. That is

M(t) = ac/(1 + ct) or S(t,0) = (1 + ct)” ; t0 = 0

g1(L)= 1-11 or L = f1(t) = L0 + El1 t ; t = [l (L) (L — L0)/H1

The size-specific mortality and survival become

M([1(L))
= ac

i + c(L — L0)/H1

11(L,L0)= S(f11 (L),0) = (1 + c(L —L0)/H1)-

Suppose c = H1/L0= 0.05 d1 and a = 2. That is, the larvae begin to grow in length
with 5% per day while exposed to a mortality rate of 10% per day. After t1 = 20
days, the surviving larvae have gained a factor of 2 in length and the specific rates
of growth in length and mortality have been reduced to half their initial values.
The survival is

11(2L0,L0) = S(20,0) = (1 + 1)2 = 0.25 ; a = 2, c = 0.05, H1 = 0.05L0

Now, suppose the rate of growth increases by 25%. That is Eli,:. = 1.25H1without
changing a and c, the constants of age-dependent mortality. Then the survival to
the age of 20 days will not change, S» = S, but the length-specific survival will in
crease because the doubling in length now is achieved already after ti,. =t1/1.25
or 16 days:

l1(2L0,L0)= S(16,0) = (1 + 1/1.25)_i 0.309 ; H1 = 1.25H1

Using the multiplicative rule, S(20,0) = S(16,0)S(20,16), it follows that the length
specific survival increases by a factor of 1/S(20,16). Thus,

rl+ct
li, = Iii = ii (2/1.8)2 = 1.235 1

Li + ct1

and 11 increases by 23.5% or less than the 32% as in the case of unchanged mor
tality at size (l()_i = 1.32 ; i = 0.25, b = 1.25; see preceding section).

Returning to weight, the general situation may be described as follows: Let
CUMW and CUMT denote cumulative mortality in weight and age. Then, by
changing the integral variable from w to t = f’ (w),

wj

CUMW(w1,w0)= J dw = J M(t)dt = CUMT(f’ (w1),t0)
j,,,0 g(w) Jf_1(w0)

and, in the same way, we obtain after the growth increase that

CUMW (w1,w0) CUMT(ti,:.,to) ; t1.

Since the age-at-size decreases, t1 < t1, CUMW will be smaller than CUIvIW and
the size-specific survival will, consequently, increase. Tt follows that

CUMT(t1,t0)= CUMT(t1,t0)+ CUMT(t1,t1)or
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S(t1,t0)= S(t1 ,t0) S (t1,t1)or i (w1,w0)= i(w1,w0)S (t1,t)

The time required to grow to size w1 decreases by a factor of 1/b when growth
increases by b:

t1 —t0 = (t1—t0)/b

However, the cumulative mortality in the age interval (t0,t1) is greater than 1/b
of the cumulative mortality in the b times larger age interval, (t0,t1), because mor
tality here is considered to decrease with increasing age. The cumulative mortality
through the size interval (iv0,w1) simply decreases by the cumulative mortality
across the age interval (t1,t1)and this is why 1 = i /S(t1,t1») expresses the impact
of the growth increase.

6.3. Survival to age with size-dependent mortality
If the rate of mortality is an explicit function of size, pw), then the impact of
changes in growth on the survival through a certain size interval is stil! exemplified
by the b-rule in Eq. (11) or Table 6.1 because (w) is not affected by a change in
the growth rate. The survival to a specific age t1, however, is now depending on
the rate of growth. We proceed as before and consider the rate of mortality at time
t before and after the change in growth

M(t) = (f(t)) ; w = f(t), df/dt = g(w)

M(t) = (f(t)) ; w = f(t), df/dt = g(w)

Here, fagain denotes the particular growth curve defmed by the initial conditions:
size w0 at age t0. If, for example, (w) is a decreasing function of size and we con
sider a growth increase (Le. b> 1) then the fish has attained a greater weight at age
t after the change, f. (t) > f(t), and the rate of mortality at time t is, thus, smaller
than the initial, M(t) <M(t). Then the cumulative mortality to age t1 also becomes
smaller than the initial and survival to age t1 increases.

Suppose the rate of growth in length is constant as in the previous example and
the rate of mortality is inversely proportional to length. That is

1(L)=q1/L and g(L)=H1 or L=f1(t)=L0+H1t; t0=0

and the size-specific survival becomes

11(L,L0)= (L/L0)_/Hi

from which we obtain the age-dependent mortality and survivorship,

M(t) =1(f(t)) = q1/(L0 + H1 t)

S(t,0) =11(f1(t),L0)= (1 + H1 t/L0)_i1U

Note thatH1/L0= c = 0.05 d andq1/H a = 2 in the terminology of the previous
example with age-dependent mortality. Thus, these values produce the same initial
survival as before:

S(20,0) =11(2L0,L0)= 0.25 ; = O.05L0



96 JAN E. BEYER

If H1 = 1 .25H1 then the survival to doubling in length increases according to the
b = 1.25 rule because the size-dependent mortality remains constant (and length
2L0 is attained after 16 days):

11(2L0,L0)=[11(2L0,L0)]”125 = 0.33 ; = l.25H1

After 20 days length 2.25L0 is attained and the age-specific survival becomes

S(20,0) =l1(2.25L0,L0)= 2.252R25 = 0.27 ; H1 = l.25H1

The relationship between S and follows directly from the multiplicative rule:

l1(2.25L0,L0)=11(2L0,L0)l1(2.25L0,2L0) or

S. = 11(2.25L0,2L0)= S’’25 (2.25/2)”’ = 0.33•0.828

The important point is that the age-dependent mortality now changes with changes
in the rate of growth. The above resuits are obtained with the age-dependent mor
tality model of the previous example, M(t) M(0)/(1 + ct), if the mortality change,
c = bc, accompanies the growth change, H1 = bH1 (and if M(0) = ac = q1/L0 is
kept constant).

Returning to weight, the general situation may be treated as follows: Before the
growth increase, w1 = [(t1) and the survivorships are equal

1(w1,w0)= S(t1,t0) or CUIvIW(w1,w0)= CUI4T(t1,t0); w0 = f(t0)

After the growth increase, the size-specific survival increases according to the b
rule, 1 = 11/b = S1’, but w1. = f(t1) > w1 and we obtain

or CUMT (t1,t0) = CUMW» (w1,,w0)= CUMW (w1,w0)+ CUMW (w1,w1)

S(t1,t0)= (S(t1,t0))1’l(w1,,w1) ; b > 1

Hence, S <S1’ in the case of a growth increase and it was shown above that S
> 5 if mortality decreases with increasing size. Thus, in this mortality situation
which is the most realistic one, a growth increase will lead to an improved survival
(at recruitment) whether recruitment is measured at a specific size or at a specific
age. This does not mean that recruitment (in terms of numbers) also will increase
(see Ex. 7.3) unless, of course, the initial number remains constant.

If the rate of mortality in some year should happen to increase with increasing
size through a certain range, then a growth increase will still improve the size-spe
cific survival but age-specific survival will diminish:

S<S<S’b=l ; M(t)>M(t) ; b>1

Suppose mortality in the example above increases proportionally to Iength. That is

= q0L andg1(L) = H1 ; H1/L0 = q0L0 = 0.05 d’

and p doubles from 5% to 10% per day when length increases from L0 to 2L0
during the first 20 days. The survivorships are

l(L,L0) = [exp(_1/2q0(L2 — Lo2))]’’; L = 2L0

S(t,0) = exp(—q0L0t)[exp(—1/2q0t2)]’ ; t = 20 days
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and equal 0.223. A growth increase of 25% causes the size-specific survival to in
crease by 35% to 1 = 11/1/25 = 0.301 but the age-specific survival to decrease by
11.7% to S = 0.197. However, the latter recruits are of size 2.25L0 or 12.5%

longer than 2L0.

Example 7: Further considerations following Beverton & Holt (1957)
on the Ricker & Foerster (1948) suggestion

In their computation of production for the young sockeye salmon of Cultus Lake,
British Columbia, Ricker & Foerster (1948) noted that predation apparently rep
resents the major cause of mortality. R&F (p.l74) write ‘the mortality rate is great
est while the sockeye are very small, and the prolongation of this period of small
size (hence greater vulnerability) in years when many fry are present appears to be
a part of the mechanism whereby the total size of the population is regulated’.
R&F, observing the small amount of food eaten by the very small sockeye in May,
further suggested with some reservation that ‘in years of very large populations
some might even succumb to starvation’. This is but a logical consequence of the
first hypothesis.

The R&F suggestion constitutes the biological basis of the present paper and
the remaining examples are devoted to simple quantifications of this regulatory
mechanism. Stimulated by Beverton & Holt’s (1957) brief but very interesting con
siderations of the R&F suggestion, the aim of the present example is to elucidate
the effect of start-density dependent growth on recruitment to size and age. The
term start-density means that the growth rate depends on the initial numbers and
not on the present numbers as would be the case in density-dependent growth (see
Ex. 8). Tt is important to make this discrimination between stock and density de
pendent processes (Harris, 1975). The designation start-density is here preferred
to stock because the processes that lead to the initial number of N0 fish of body
weight w0 at age t0 are flot considered. It should be noted that the rate of mortality
is considered to be density independent throughout this example (but see the cbs
ing Section 7.5). The initial condition is interpreted as the onset of feeding in the
present context but the theory does flot depend on this choice. The example rep
resents a continuation of Exs 4 and 6 with the changes in the rate of growth ex
plained in the simplest possible way by year-to-year changes in numbers. The in
tention is to provide a basis for more consistent studies of the possible effects of
food-competition on recruitment.

7.1. First interpretation of B&H on R&F

The very first quantification of the R&F suggestion and its impact on recruitment
was provided by Beverton & Holt (1957, p. 55) using the von Bertalauffy growth
equation as a starting point,

g(w) = Hw213 — kw ; W = (H/k)3

Suppose the larvae begin feeding at age t0 and weight w0. Following B&H, let us
further suppose that the larvae are grazed by a predator until they reach a specific
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size w at a certain age t, after which they are too large to be eaten by the predator.
We assume that the predator exerts a mortality M1 in addition to M0, the mortality
of other causes, i.e. the total rate of mortality in the size tange of the predator field
(‘the window’), M1 + M0, drops to M0 from size w onwards. The survivorship to
tr, the age of recruitment becomes, using the multiplicative rules,

S(tr,t0) = exp(—M0(t— t0)) exp(—M1 T) ; r = —

where T is the time required to grow through the width of the predator window,
Lw = — w0. Now, if there is competition for food among the larvae then the rate
of food consumption by each larva or H, the coefficient of net anabolism will de
pend on N0, the number of first feeding larvae. For a first approximation, B&H in
reality regard H (or W,,j’3) as being inversely proportional to N (see Section 7.4
for discussion). At low weights (i.e. W0113 « W1/3) and over a short period of
time (i.e. T «3/k), we also find that T is inversely proportional to H (see below).
These relationships give

cc cc [rate of food consumption ] cc

so the critical survival factor becomes

exp(—M1) = exp(—N0constant)

which leads to the Ricker type (Ex.3) of recruitment curve,

R = N0 S(tr,to) cc N0 exp(—N0constant) ; t(N5) < tr

The first approximation, cc /H, underlying these early considerations of the
R&F suggestion is obtained by neglecting the k-term of the growth equation, i.e.
putting

g(w) = Hw213 or G(w) = Hw-113

which, with a constant rate of mortality, M, through Eqs (11) and (13) leads to the
survivorship,

1(w,w0) = exp(—(w3—w01/3)3M/H) = exp(—MT)

and the time required to grow to size w,

r = (w”3 —w0’i3)3/H

This is a good approximation to the age-at-size obtained by the von Bertalanffy
growth equation (VBGE). Suppose the predator window or the critical size range is
specified by w/w0= 200 and put H = 4.05 g”3 yr’, k = 0.285 yr and w0 = 0.5 mg
as in Ex. 4 for North Sea plaice. The critical period of 106 days in the case ofVBGE
becomes 104 days using the above formula. The reduction of 2 days is due to faster
growth because the k-term or the rate of fasting metabolism has been neglected. In
the approximation, the specific growth rate decreases from 14.0%at the onset of
feeding to 2.4% at the end of the critical period. Compared to these percentages,
the specific growth rate in VBGE is reduced by k = 0.00078d1or 0.08% per day.
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Recalling from Ex. 4.4 that VBGE is flot the best starting point for describing
larval growth, it seems more appropriate to interpret g(w) = Hw213 as a ‘new
model’ rather than to regard the B&H considerations as based on an approxima
tion to VBGE. With one amendment, this growth model seems to constitute a
promising and simple starting point for describing growth at least in early life. In
combining anabolism and catabolism in one single term we expect (based on tra
ditional physiological considerations) that the exponent should take a value be
tween 2/3 and 1. This will reduce the fall of specific growth rate during early life
compared to the situation considered above with a power of 2/3. This type of a gen
eral allometric growth model is considered in Ex. 10. In the present context of
B&H on R&F, the power of 2/3 is maintained but generalizations are straight for-
ward (see also Section 7.5).

Initial number at size w0

Fig 7.1. Illustration of the Ricker curve for recruitment at size (bottom fig.) in the B&H one predator
situation described by an extra mortality coefficient M1 in the size-window )wo,w0) )top left fig). The
time required to grow to a certain size and hence CUMW, the size-specific cumulative mortality increas
es in proportion to the initial number, N0 fish sized to0, because the rate of growth is considered in
versely proportional to N0.

The second approximative relationship states that H, the coefficient in the al
lometric growth model, is inversely proportional to the start density:

H(N0) = H1/N0

Fig 7.1 illustrates that this assumption leads to a Ricker curve for recruitment
to a specific size, w1. The cumulative mortality across the size-interval from w0 to

>‘

(0

0

ø
0)
0

‘0—

Medium N0

WO W

()
0)
0

ø—
>,

M0 +

M

Size

-

a)
.

W, WO

High N0

Size
WC

Size

N,

W1 WC

N, =N0

Wl

= eop (—CUMW(N0))

0 E,



100 JAN E. BEYER

w1 becomes proportional to N0 and we can write

CUMW(N0)= No/Emax; Emax [M0T0(l) + M1r(1)]-’

where Emax’ = CUMW( 1) denotes the cumulative mortality in case of N0 = 1 cal
culated as the sum of the contributions from M0 and M1. The time-units to grow
to the critical size w, and to the size of recruitment can be expressed as functions
of weight using the age-to-weight formula above:

rC(l) = (wC”3 —w0113)3/I-11 and r,(1) = (w,1/3 —w01/3)3/H,

The equation for the recruitment curve in Fig. 7.1 can now be written as

Ca

0

N0exp(—CUMW(N0))=N0exp(—N0/E)

Fig 7.2. Illustration of recruitment at a specific age in B&H on the R&F suggestion. This is the age
equivalent to the size version shown in Fig. 7.1. When the initial number of Iarvae, N, is small, the lar
vae grow quickly through the predator field (t— t, is small in top left fig.) and recruitment is almost
entirely determined by the cumulative mortality of other causes (S -line in bottom fig.). As N0 increas
es (top mid-fig.), the critical time, r = t— t0, increases in proporrion toN0 and recruitment follows a
Ricker curve. At N0 = ECR, the rate of growth has been reduced to such a low level that surviving larvae
leave the predator field exactly at the age of recruitment (crirical point CR). The cumulative mortality
has reached irs maximum and the recruitment graph is transformed into a straight line (the S,,n-line)
for N,> Ecs (top right fig.).
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The situation for recruitment at age is shown in Fig. 7.2. The time required to
grow through the predator field increases proportionally to N0:

T(No) = t(N0) — = N0r(1)

Thus, the cumulative mortality to recruitment is

CUMT(N0)= + M1r(N0) = tr — t0 , T(No) T

and recruitment takes the form

R — J N0Smax exp(—No/Em) ; N0 ECR

— I NSnjn ;

where the maximum and minimum survival are

Smax = exp(—Mo) and Smin = Smax exp(—M1)

Maximum recruitment of the Ricker part of the curve is specified by

Rm = Smax Em exp(—1) ; E = [M1 (1)1_i
3 3 i 33A41 (w / —w0 /

and the transition to the Smin -recruitment line occurs at

H1r
RCR = Smin ECR ; ECR Tr/Tc(l)

I 3 I 33(w /
— w0 /

The ratio of recruitment for these two points becomes

RCR ECR Smin ECR
= .

— e = 1V11T expij —IVI1T) ; = IVI1T

Rm Em Smax
r r

Em
r

It is, thus, Mi’rr, the cumulative mortality to the age of recruitment with the
predator mortality acting alone that specifies the relative position of the two
points. If M1Tr = 1 then ECR = Em and the Ricker part of the recruitment graph is
terminated already at the maximum point after which recruitment continues to in
crease but in direct proportion to N0. If M = 20 yr-1 and i-= 1/4yr (3 months), then
EcR = 5 E and most of the Ricker curve is maintained (the critical recruitment
point, CR occurring at less than 1/10 of the maximum Ricker leve1). If the age of
recruitment is, instead, about one year (T = 1 yr), then the critical point occurs at
20 Em and recruitment is described by a Ricker curve for ali relevant values of mi
tial stock sizes.

7.2. The general case of several predators

Suppose the larvae are grazed flot by one but by several predators each of which
is characterized by a specific size-window. These more or less overiapping size-win
dows determine a consecutive series of critical size intervals that the larvae must
succeed to grow through in order to become recruits. The time spent in the jth size
interval is T = (W1 — W_1)3/H, with a survival factor of exp(—M)’l-,) where M denotes
the total predation mortality from the types of predators that contain (w1_1,w,) in
their size-window. This creates a situation of stepwise constant rates of predation
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mortality-at-size in excess of M0, the constant level of mortality of other causes. If
is inversely proportional to or some other measure of the size of the year

class in the jth interval, then the caiculation of the recruitment curves becomes
more complex. Ex. 8 deals with this type of true density-dependency in a
continuous case. If ali the H1s are inversely proportional to N9, then the Ricker
type of curve for recruitment at age is maintained irrespective of the number and
the character of the predatory species provided that the surviving larvae grow
through the entire predator field before the age of recruitment.

For a treatment of this general situation, we can write the vital rates in the fol
lowing form:

g(w,N0)= H(N0)g0(w) ; H(N0) = H1/N0

w0ww

i M0 , ww

whereg0(w) andt0(w) (with the condition .u0(w) = 0) denote two arbitrary, posi
tive and continuous functions. Recruitment to size w1 is, then, described by the fol
lowing Ricker curve:

r (w)dw 1i= N0 exp(—No/Emax) with =
LJ0 H1g0(w)

The cumulative mortality to the age of recruitment becomes a linear functiori
of the start derisity:

r “ (w)dw 1-1
CUMT(N0)= M0-+ No/Em; Em

= [j’
°

j= I-1g0(w)

and we obtain part of a Ricker curve (see Fig 7.3):

R = N0 Smaxexp(—No/Em) ; N0 ECR

where the critical start density is determined as

ECR = (1) ; ;(1)
= dw

,
H1g0(w)

The shape of the recruitment curve beyond this critical point depends ong0(w)
and t0(w) but recruitment will ultimately increase towards the asymptote for the
constant mortality rate achieved at zero growth rate, i.e.

R = S N0; S = exp(—(M0+0(w0))r) = Smax exp(—.t0(w0)i-)

In order to iliustrate that part of a Ricker curve is obtained for any formulation
of the size-dependent rates of growth and mortality, a rather sophisticated M
shape of size-dependent mortality is used in Fig 7.3. Notice that these and ali other
caiculations of the effects of start-density-dependent growth simpiy represent ap
plications of the multiplicative rule for a change in the rate of growth. For recruit
ment at age, the constant part of mortality (M0) contributes with a constant factor
of Smax. The contribution to recruitment-at-age from the size-dependent part of
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t:a.
0+

c

Initial number at age t0

Fig 7.3. Illustration of the generalization of B&H on the R&F suggestion. The rate of mortality is de
scribed by an arbitrary continuous function, o0(w), in the size-window (w0,w) in excess of M0, the
constant level of mortality (top left fig.). The cumulative mortality to age-at-w, generated by i)w)

alone, becomes proportional to N0 because the rate of growth is considered to be inversely proportional
to N0. Consequently recruitment at age t, follows a Ricker curve until N0 = E5 at which point (CR) the
critical weight w is achieved at age tr. For N0 > the mortality function at age is further stretched
(top right fig.) and recruitment will follow a complex curve determined by the shapes of the size-de
pendent rates of mortality and growth. Recruitment ultimately increases towards an asymptote with
slope S = exp(—CUMT) determined by the rate of mortality at size w0 (age t0). The figure is merely
an illustration of the principles but the allometric2/3-power growth model with iVj = 200tv0 was used
to draw (by band) the mortality-at-age curves (top fig.).

mortality (,u0(w)) follows the multiplicative rule and creates the Ricker curve be
cause here the real age considered (t(N0) = t in the terminology of Ex. 6) is not
constant but changes with changes in the rate of growth in order to continue to
represent the age-at-the critical size (wo). When this age-at-w exceeds the chosen
age of recruitment, then the multiplicative rule is no longer valid for the survival
to tr and the second part of the recruitment curve (for N0 > ECR) will be located
above the continuation of the Ricker curve. In Fig. 7.3, the rate of mortality starts
by an increasing relationship to size and hence, the recruitment curve will ultimate-
ly approach the asymptote from below. A growth reduction caused by an increase
in N0 here leads to an increase in the age-specific survivorship but a decrease in the
size-specific survivorship (cf. the Ricker curve) — see also Ex. 6.3.

L
CR

2E0
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7.3. Decreasing mortality with increasing size
Suppose the total effect of ali the different causes of natural mortality operating
on the juvenile stages is a general trend of decreasing mortality with increasing
body-size. How will this change the shape of the age-specific recruitment curve?
We already know, from the considerations of Fig. 7.3, that recruitment ultimately
will increase and approach an asymptote from above if the rate of mortality bears
any decreasing relationship to size but will the first part of the recruitment curve
stili be part of a Ricker curve?

Following Ex. 4.3, a simple treatment of this situation is obtained by considering
mortality as being inversely proportional to weight to the power of 1/3V That is,

(w) = qw-’13 and g(w,No) = H(N0)w2/3 ; H(N0) = H1/N0

which gives anse to the foliowing survivorship and weight-at-age:

l(w,w0) = S(t,t0) = (w/wo)_9/H(No) ; w = [w0113 + (t —t0)H(N0)/3]3

In the plaice example, we used w0 = 0.0005 g and q = 2 g”3 yr’ so q/H = 0.494
and the survival during the first 104 days becomes i 2000494 or 7.3%. Halving
the rate of food consumption doubles the duration of the critical period. That is,
with H/2, the larvae use 208 days to gain a factor of 200 in weight and the sur
vivorship is 12= 2000988 or 0.53%. After 104 days, the larvae have only gained a
factor of 40 in weight (2Omg), so the survival to this age has only decreased to S
= 400988 or 2.6%. Recruitment at age t is given by

R =N0S(tr,to) = N0[1 + w01/3(t—

oi since 1-1(N0) is inverseiy proportional to N0,

R = N0(1 + COE1/N0)_No/E1 = N0 exp[(—N0/Ei)ln(1 +C0E1/N0)]

where

= CUMT,nax= POTr = qw0’13 ; = H1/3q

Due to the iogarithmic factor in the exponent, recruitment at age does flot repre
sent a Ricker curve but, as we shall see below, the shape of the recruitment curve
will have a strong resembiance to the Ricker curve for sufficiently high values of
C0. First, we consider the extremes. At very low initial numbers, N0, growth is ex
tremely fast and the cumulative mortality to the age of recruitment approaches
zero. The slope of the recruitment curve at N0 = 0 is Snax = i (or 100%). At very
high initial numbers, growth is extremely slow and the cumulative mortality ap
proaches a maximum of C0. Hence, as noted above, recruitment ultimately increas
es towards an asymptote:

R = Smin N0 ; Smin = exp(—C0)

Fig. 7.4 illustrates how the constant C0 or Smjn determines the shape of the recruit
ment curve. Note that the other constant, E1, represents the initiai number at
which the survival is (1 +
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age of recruitment from case i to
4. The initial mortality rate is 7%
per day and it thereafter decreases
in inverse ratio to the cubic root of
weight. The rate of growth is in
versely proportional to the initial
number (N0) but increases in direct
proportion to the 2/3-power of
weight. Recruitment after 40 days
(case i) bears an increasing rela
tionship to N0. When a little more
than two months have elapsed (67
days in case 2), recruitment has a
resembiance to the B&H type of
curve but continues to increase to
wards the asymptote of 1% survi
val at high N0. After three months
(case 3), the first part of the re
cruitment graph is shaped like the
Ricker curve but recruitment ex
hibits a local minimum before it
starts to raise slowly towards the
0.2%-asymptote. After one year,
(case 4) recruitment has a strong
resembiance to a Ricker curve, the
minimum and asymptote being of
no practical importance (arbitrary
scales).
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Fig 7.4 again refers to the plaice example (q = 2, w0 = 0.0005 and, H = 4.05 flow
valid for N0 = i.e. H1 = 4.05 1010). The initial rate of mortality becomes p =
25.2 yr (or 6.9% per day) and we get

C0 = 25.2 and E1 = 6.75 10

If Tr the time to recruitment is 1/25.2 yr or about two weeks then C0 = 1 (or
= exp(—1)) and recruitment will increase rapidly towards the steep 37%-survival
asymptote. As the age of recruitment and, hence, C0 increase, Smjn, the slope of the
asymptote will decrease and the shape of the recruitment curve will gradually
change exhibiting a local maximum and a local minimum (see Fig. 7.4). The initial
numbers for these Max and Min points are found by differentiating R with respect
to N0 and setting equal to zero, i.e. obtaining the roots of the following transcen
dental equation:

x—1+C0(1—1/x—lnx)=0 ; N0=C0E1/(x—1) ; x>1

Setting the second derivative also equal to zero (i.e. the inflexion point becomes
a saddle point), gives the additional condition:

2x = C0 + JC0 (C0 — 4)

and we obtain C0 = 4.625. This is how the basic shape of the recruitment curve is
determined by C0 = the cumulative mortality to age of recruitment with a con
stant rate of mortality equal to initial mortality. If C0 takes a smaller value than
4.625, recruitment increases with stock throughout the range and there is no max
imum on the curve at all. However, if C0 exceeds 4.625, there will be a maximum
as well as a minimum before the asymptotic increase. In the present exampie, the
intermediate saddie-situation is achieved when we consider recruitment at ir =
4.625/25.2 yr or after 67 days (case 2 in Fig. 7.4). Specification and characteristics
of the four cases are given in Table 7.1. It may be noted that the local max-to-min
ratio of recruitment increases from 1.8 in case 3 (rr. = 3 months) to 8.2 million in
case 4 (. = 1 year).

Fig 7.5 shows the initial part of the four age-specific recruitment curves on the
same scale together with the Ricker curve for recruitment to gain a factor of 200
in weight. Ali size-specific recruitment curves become Ricker curves with the global
maximum located on the line for 37% survival (N11 = Emax exp(—l)):

N1 =N01(w1,w0)= N0 exp(—No/Emax)

where

Emax
= Href

Eref ; = Hrcf Eref
q ln(w1/w0)

In the present case with q = 2, zv1/w0= 200 and a reference growth coefficient
of Hrf = 4.05, maximum recruitment occurs at an initial number of 0.382 Eref =
Emax. Eref = 1010 is a random choice. Note that the age-specific recruitment curve
in case lis selected to intersect the Ricker curve at its maximum (Nax = 1.406 10
at E, = 3.822 10).
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Table 7.1. Time to recruitment (Tr) and characteristics of the four cases
considered in Figs 7.4 and 7.5. C0 = 25.2 and is the maximum cumu
lative mortality. R, is the bea! recruitment maximum occurring at N0 =

E,,. E200 = 35.08 10 ; and is the initial number (N0) at which recruits
have gained a factor of 200 in weight (points I to IV on Fig. 7.5).

Case .(yr) C0 Smj, Rm•109 Em109 E200109

1 0.1089 2.738 0.065 — — 3.8
2 0.1835 4.625 0.010 1.2 14 6.4
3 0.25 6.30 0.0018 0.94 4.9 8.8
4 1 25.2 1.2 10 0.53 1.9 35

Fig 7.5. The size-continu
ous equivalenr to B&H on
the R&F suggestion. The
rate of mortality bears a 15
decreasing relationship to
body-weight. Curves 1 to
4 represent recruitment at
increasing age. Tahie 7.1
gives some characteristics.

. 10
Fig. 7.4 shows the shape
of the curves over the en
tire range. The heavy out

lined curve is the Ricker
recruitment curve to gain 5
a factor of 200 in weight.
The points of intersection
are denoted by 1(40 days),
11(67 days), III (3 months) °

and IV (1 year), the latter o
occurring outside the
graph at an initial number
of 3.5 1010.

7.4. Second interpretation ofB&H on R&F

The correct approximation between the time required to grow through a weight
range and H or W0013 is (Section 7.1)

1 1
T cc

H W3

However B&H somewhat misleadingly used ; cc 1/W (see also comments by
Harris (1975)) and, in order to obtain the same Ricker type of resuits as B&H, we
have so far assumed I-I to be inversely proportional to N0 (i.e. the first interpreta
tion). B&H, instead, suggest that it is the amount of food eaten by each larva that
is inversely proportional to N0 and for a first approximation, they considered the
food eaten to be proportional to W:

0 1 2 3 4 5 6 7 8 9 10

Initial Number (N0 x 10)
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H cc Rate of Food Consumption cc (1. interpretation)

cc Food eaten per larva cc (2. interpretation)

We shall here consider the quantification of this second interpretation within
the case of continuous decreasing mortality with the size of the fish as described in
the previous section. That is

g(w,N0)= H(N0)w213 ; H(N0) =H2/N03

(w) = qw-”3 =0(w0/w)113 ; o = 0(w) = qw0-113

Recruitment to size w1 becomes

= N0 exp(—N0113/E0); E0 =H2/(qin(w1/w0))

We shall in the following refer to this recruitment relationship as the cube-root
Ricker type of curve. Tt bears a resembiance to the shape of the Ricker curve
(Paulik, 1973 and Harris, 1975) but it is more fiat — see Fig. 7.6. The survival at
maximum recruitment is oniy 5%,

Nmax/Emax = exp(—3) = 0.049 8 ; Emax = (3E0)3

and at the infiexion point, occurring at more than twice Emax, recruitment is only
reduced by a factor of 0.87,

Ni/Nmax = (Ei/Emax) exp(—1) = 0.872 ; Ei/Emax = 64/27 = 2.37.

To illustrate the stabiiization in recruitment against changes in initial numbers,
we may compare recruitment at 8Ema, with the maximum. Recruitment is reduced
by a factor of 8exp(—7) or to 0.73% of the maximum ifl the Ricker case but only
by 8exp(—3) or to 40% in the cube-root-Ricker case. On the Ricker curve, the sur
viva1 is simply reduced from exp(—1) (point Max1 on Fig. 7.6) to exp(—8) because
the rate of growth is reduced by a factor of 8. In the cube-root-Ricker case, how
ever, the rate of growth is only halved and the survivorship decreases from exp(—3)
(point Max2) to exp(—6). Tt is this damping of the variations in the rate of growth
at size that, from a cause and effect point of view, makes the cube-root-Ricker
curve a tractable alternative to the Ricker curve.

The constants producing Fig 7.6 are the same as before i.e., q = 2 and w1 =
200w0.The location of the recruitment curve is determined by Href, the reference
value of the coefficient of growth:

E=ax
= ( 3Href )3

Eref ; H2 = Href Eref’13
qln(w1/w0)

If H = 4.05 then Erna,, = 1.507 Er,,f or 15.07 10 with Eref = 1010. Instead Hrcf
has been chosen so that the maximum of the cube-root-Ricker curve also occurs
at Ena,, = 3.822 10, the maximum of the Ricker curve. That is, from
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Fig 7.6. Recruitment to gain a factor of 200 in weight when the rate of mortality is inversely propor
tional to the cube root of weight and the rate of growth is proportional to the cube root of weight
squared. The top curve is the Ricker curve in the first interpretation of B&H on R&F with H, the
growth coefficient being inversely proportional to N0 (same curve as in Fig 7.5). The fiat curve is the
cube-root-Ricker curve in the second interpretation of B&H in which H is inversely proportional to
N03.The point of intersection (H = 2.04 at N0 = 2 1010) was selected in such a way that the maxima
occur at an initial number of 3.82 i0. At the maximum Max1 (H = 10.6), the rate of growth is three
times greater than in Max2 (H = 3.53) because the survivorship in Max, (5%) equals the survivorship
m Max1 (37%) cubed.

HrrF
=

qln(w1/w0)= 2.039 ; Emax = Ercf/(3) = 0.1925 Ercf

we obtain Eref = 1.986 10’° and, hence, Il2 = 5523 or E0 = 521.2.
Recruitment at age tr is described by the following relationship (cf. Section 7.3):

El,
R = N0(1 + CoE2/N0hI3)_io”2 ; CO = ILOTr E2 —

3q

and the asymptote is still determined by Smjn = exp(—C0).Note that E73 determines
the initial number at which the survival is reduced to (1 + C0)-1.E2 = 920.5 in the
example. The development in the shapes of these cube-root recruitment curves
with increasing age of recruitment follows an equivalent pattern to the situation
depicted in Fig. 7.4. However, C0 is replaced by C0/3 in the x-equation for the de
termination of local Max and Min, i.e.

x —1 + (C0/3)(1
— 1/x — mx) = 0 ; = [C0E2/(x

—

and the saddie-point situation occurs at C0/3 = 4.625 or at C0 = 13.875, a three
times greatert0-generated cumulative mortality. Thus, in the previous example

= e

Max15
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with = 25.2 yr-1 (i.e. w0 = 0.5 mg), the saddie-point situation after 67 days in
Fig. 7.4 (case 2) is now occurring after 201 days (rr = 0.55 yr), a three times longer
recruitment period. At the same time, the asymptotic survival is cubed hereby;
being reduced from 1% in Fig. 7.4 to about one in a million. This is but another
way of expressing that one effect of the cube-root recruitment is to lengthen the
right part of the curve. The cube-root recruitment curve, therefore, in reality bears
more resembiance to a B&H shaped curve than to a Ricker curve for C0 13.875.
For example, after one year (C0 = 25.2), recruitment at maximum (Rm= 3.51 10
for Em = 3.16 10 (x = 16.8)) is only reduced by 38% when the initial number in
creases by a factor of 10. The equivalent situation in Fig. 7.4 (case 4) is a 26 factor
of reduction in recruitment!

Recruitment after less than 201 days bears an increasing relationship to the
start-density. Fig. 7.7 depicts the situation with Tr = 1/4 yr.
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Fig 7.7. Recruitment after three months corresponding to the size-specific
situation considered in Fig. 7.6. The initial rate of mortality is 7% per day
producing a critical cumulative mortality of C0 = 6.3. There is a maximum
and a minimum on the curve when the growth coefficient is inversely pro
portional to N0 (case 3 of Figs 7.4 — 7.5 and Table 7.1). However, in the
cube-root case, recruitment increases with N5 and there is no maximum
on the curve at all. The point of intersection is selected to occur at = 2
1010. Both curves ultimately approach the shown asymptotic line for the
exp(—6.3) or 0.18% survival.

7.5. Conclusions and implications for improved models
The basic results may be summarized as follows: Whatever continuous functions
we propose for describing the size-dependency of the vital rates, recruitment at any
specific size follows a Ricker curve if the growth coefficient is inversely propor

i 2 3 4 5 6 8 9 10
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tional to the start-density. In the more general case of growth being inversely pro
portional to the start-density in some power, 6, we obtain a 6-power-Ricker curve
(see also Ex.8.3):

= N0 exp(—a1N08); Rate of growth cc N0

Note that, due to the power-rule, the same type of relationship stil1 hoids if the
rate of mortality is also proportional to the start-density in some power. For ex
ample, if the growth rate is inversely proportional to N0113 and the mortality rate
is proportional to N0213, then the combined effect is a size-specific recruitment
curve with 6 = 1/3 + 2/3 i.e. a Ricker curve. In the cube-root case (6 = 1/3), the curve
is stretched out and, in fact, bears more resemblance to a B&H curve than to a
Ricker curve (see Fig. 7.6). Because of the power-rule, the curves are sensitive to
changes in the vital rates (as indicated by the selection of the reference values) and
the maxima will move respectively on the exp(—1) and exp(—3) survival-lines in the
two cases considered.

The shape of the age-specific recruitment curve depefids on the age of recruit
ment, the size-specific vital rates and, of course, Ofi 6. Even in a simple case of a
size-independent instantaneous-rate-ratio of mortality to growth (i.e. p(w)/G(w)
cc N0), the first part of the recruitment curve changes from a mode of steady in
crease through the B&H shape of curve to the Ricker type of curve as the age of
recruitment increases (see Fig. 7.4 in a case of density-independent mortality and
6 = 1). The second part of the recruitment curve always exhibits an increasing re
lationship to N0 and, ultimately, approaches the survival-line determined by the
initial rate of mortality. If, however, the rate of mortality (in the examples consid
ered) is also proportional to the start-density in some (positive) powei then age
specific recruitmeflt will reach a maximum and be reduced for high initial numbers
(because C0, the asymptotic cumulative mortality is now proportional toN0 in that
power). Only in the special case of (w) being proportional to N0 and g(w) beifig
independent of N0 will recruitment at age follow a Ricker curve.

However, in the situatiofi considered by B&H in their treatment of the R&F
suggestion, the shape of the size-specific recruitment curve is copied to recruitment
at a specific age as long as the larvae grow through the critical size range and reach
the constant level of mortality before or at this age of recruitment. Thus, age-spe
cific recruitment in Figs 7.2 and 7.3 will follow the first part of cube-root-Ricker
curves if the rate of growth is inversely proportional to the cubic root of N0.

B&H, in reality, use the2/3-power allometric growth model, g(w) =

which is the first step towards a more appropriate growth model for larval fish
than the von Bertalanffy growth equation (see Exs 4 and 7.1). B&H need only to
assume this growth model to apply in (w0,w), the critical size range, because the
age-specific survivorship from w. onwards is determined by the constant rate of
mortality and is, thus, independent of the rate of growth. The time required to
grow through the critical range is inversely proportional to H, the coefficient of
growth which again is related in some way to N0 because B&H consider the mdi
vidual food supply to be restricted due to the high density of fish (see excellent dis
cussion on p. 147 in Harris, 1975 but disregard his general statement). In the first
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interpretation (i.e., the Ricker case), it is the total rate of food consumption that is
considered to be constant (‘—N01-I) and the individual rate of growth becomes very
sensitive to changes in N0. This sensitivity is considerably moderated in the second
interpretation or the cube-root Ricker case in which the total amount of food eaten
is considered to be constant (—N0H3).Two further improvements stand to reason.

First, it is necessary to impose limits on the rate of growth. At low initial num
bers, the growth rate increases beyond any sensible maximum in the models con
sidered here. Conversely, at high initial numbers the growth rate becomes extreme
ly small and actually approaches zero in the asymptotic behaviour. Introducing
max and min limits on the rate of growth corresponds to considering only a certain
central part of the recruitment curves. This is done in Ex. 9 but a max limit is al
ready considered in Ex. 8.

Secondly, deviating from the constant rate of mortality in B&H on R&F cre
ates, in particulai a need for introducing a consistent biomass account of food con
sumption in describing density-dependent growth. The rate of growth must, in
some consistent way, depend on the numbers-at-age or the rate of mortality and
flot only on the initial number. Ex. 8 gives an introduction to density-dependent
growth models in continuation of the present example. A simple approach to in
corporate the effect of mortality on the rate of growth is then described in Ex. 10
with the attempt of dealing with both types of improvements in a general, allomet
ric model of growth and mortality of larval fish.

Exampie 8: On the Shepherd & Cushing (1980) suggestion
This example deals with some simple cases of density-dependent vital rates stimu
lated by the Shepherd & Cushing (1980) model. In each case, the respective situ
ation of density-dependency will be compared to the equivaleflt situation of start
density dependency as introduced in Ex. 7. Even the most simple situations of den
sity-dependent growth result in complicated dynamics and it is instructive to begin
by considering the behaviour of the S&C model in time (or age) before dealing di
rectly with numbers at size.

8.1. Growth and recruitment in the S&C model
Shepherd & Cushing (1980) use the ciassical assumption of a constant rate of mor
tality, i.e. an exponential decay in numbers:

N(t) = N0 exp(—M(t — t0)) ;
dN(t)

=

Age-specific recruitment, consequently, follows a straight line:

R = N0S0 ; S0 = exp(—M(tr — t0))

S&C consider the specific rate of growth to be inversely proportional to a linear
functiofl of the population density at the same instant in time. That is a growth rate,

dw(t)
= G(t)w(t)

dt
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with G(t), the specific rate of growth:

G (t)
= Gmax = Gmax

i + N(t)/A 1 + N0 exp(—M(t—t0))/A

and by integrating we obtain the mortality dependent weight-at-age,

/ N0/A exp(M(t — t0)) \ÇM

w(t) = w01 +
\1+N0/A 1+N0/A

S&C note that the constant A is related to the abundance of food. If N0 = A, then
the (specific) rate of growth increases from Gmx/2 at age t0 towards Gma as the
year-class diminishes, the result of which is the following weight-at-age:

w(t) = W0[1/2 + 1/2 exp(M(t —t0))]G1 ; = A

Suppose for this situation that the maximum growth rate is 10% per day, i.e. Gmax
= 0.10 d-’. If the rate of mortality is as high as 10% per day then the growth rate
of the survivors increases rapidly with age (reduced numbers). After 6 days the rate
of growth has increased from the initial 50% to 65% of the maximum and, after
60 days, it has virtually reached the maximum (99.8%) at which time the larvae
have gained a factor of 202 in weight. Maximum growth at M = oo is about twice
this M = Gmax case and resuits in exp(Gmax 60) or a theoretical increase in weight
by a factor of 403 (but no larvae survive). At a mortality rate of 5% per day, the
larvae gain a factor of 111 ifl weight ifl the course of the 60 days. This factor is re
duced to 31 with a mortality rate of 1% per day in which case the rate of growth
increases to only 65% of the maximum after the 60 days.

The equivaleflt situation with start-density dependent growth is,

dw(t) Gmax I Gmx(t t0)
= w(t) or w(t) = w0exp i

dt 1+N0/A \1+N0/A

and, with Gn,ax = 0.10 d1, the larvae grow 5% per day and the weight consequently
increases by a factor of 20 during 60 days irregardless of mortality (but with an
initial number of N0 = A larvae). This is the minimum growth achieved ifl the S&C
model at zero rate of mortality. Thus, an important consequence of the S&C model
is that the specific rate of growth bears an increasing relationship to the rate of
mortality with Gmax as the asymptotic maximum.

The time required to grow to a specific size (w1) is derived by inverting the re
lationship for weight-at-age and we obtain,

i
/

_________________

71=t1—t0———— lnl I 1= (w /w0)_M/G

M \ i + (1 —10)N0/A) ‘

where the bracicet, the argument of the logarithm equals exp(—MT1)and, thus, de
signates the survival to gain a factor of p = w1/w0in weight. That is, size-specific
recruitment follows a Beverton and Holt type of curve:

= ; p = w/w0
1+(1_pM/G=)N0/A
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This recruitment curve and its derivation is considered in the next section in a more
general context. The asymptotic maximum of recruitment becomes

Na=A/(PM/G_l) ;

In order to illustrate the important difference between age and size-specific recruit
ment, suppose that the rate of mortality is 5% per day. The survival to 60 days is
then exp(—3) or 5% and independent of N0. However, size-at-age depends on N0.
If N0 A, then the weight-gaining factor is P60 = 111 in the case of Gruax = 0.10 as
noted above. However, if the initial number is multiplied by 100 then P60 = 1.4 1.
That is only an increase of 41% in body-weight which is achieved during the 60
days for the 5% survivors. The time required to gain a factor of 111 in weight has
increased to Ca. 137 days with the cost of a reduction in the survival from 0.05 to
0.001. This reduction by a factor of 50 in the survival for a 100-fold increase in
initial numbers implies a doubling in recruitment from 0.05A to Na = 0.1OA.
Recruitment to p = 111 is virtually constant for further increases in N0 because the
survival decreases almost in an inverse ratio to N0 as growth ceases. This type of
caiculation indicates the need for considering the biomass as well, in order to make
a sensible comparison between size-specific and age-specific recruitment.

The instantaneous rate of biomass-increase equals the difference between the
instantaneous rates of growth and mortality:

dB(t)
= B(t)(G(t) - M) ; B(t) N(t)w(t)

dt

Fig. 8.1. Biomass and recruitment characteristics of the Shepherd & Cushing (1980) model in the case
of 10% max-growth and 5% mortality per day.

The top part depicts biomass at size and age with N0 = 10° or 5000 metric tons of larvae (w5 =

0.0005 g) beginning to grow at 1.6% per day at the onset of feeding (time zero). The minimum of Ca.

2700 tons is reached after Ca. 33 days when the numbers are reduced to A = 1.9476 1012 and the body
weight has increased by a factor ofp = 2.80. The growth rate at the minimum is 5% per day and reaches
9.2% on day 81 (time 80.58) when the 1.78 10° survivors have obtained a 100-fold increase jo weight.
The cost of increasing the biomass by a factor of 1.78 to 8900 tons at point P has been a survival of
1.78% and a total food-consumption of almost 43000 tons copepod nauplii (assuming an assimilation
efficiency of 0.7 and a starving metabolism of 3% per day, see point P on Fig. 9.2).

The mid-part shows the B&H curve for recruitment at weight 0.050 g (p = 100) and the straight
line of 1.78% survival for recrultment after 81 days. The asymptotic maximum of 2.16 1011 ‘/20-gram-

larvae produces an asymptotic maximum of 10800 tons in the B&H curve for biomass at p = 100 re
cruitment (bottom left). The initial slope of the B&H curve increases by a factor of p from 0.10 in num
bers to 10 jo biomass. The initial slope of the curve for biomass after 81 days (bottom right) is Ca. 56.
The curve reaches a maximum of 14200 tons at an initial biomass of 1050 tons (N0 = 0.21 1013). Thus,
the 0.37 1011 surviving larvae (1.78%) at the maximum have gained a factor of 760 in weight in the
course of the 81 days. Their initial growth rate was 4.8% and exceeded the critical 5% already during
the second day.

Note that the bottom right figure only shows the first part of the curve. The biomass reaches a min
imum of Ca. 3750 tons at an initlal biomass of Ca. 50800 tons after which the biomass increases and
approaches the recruitment line of slope 0.0178 for zero growth. One may also note that the food con
sumption for the (local) maximum Situation only has increased by 30% compared to the P-situation.
The biomass of the fewer recruits at the max exceeds the P-biomass by 60%. Food consumption for
the min situation (p = 4.16) has also increased (44%) because of Ca. 10 times as many (but smaller) fish
than jo the P-situation.
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Hence, the biomass bears a decreasing relationship to age or size if M is greater
than or equal to Gmax but, an increasing relationship if M is less than or equal to
G0 = Gmax/(1 + N0/A). In the in-between mortality situation, G0 < M < Gm<x, the
biomass ultimately increases but reaches a minimum at that age (or size) at which
the specific rate of growth has increased to M. The time required to reach this min
imum is M’ 1n((N0/A)/(G0«/M

—
1)) at which T-age the numbers have been re

duced to A(Gmax/M — 1) and the body-weight has increased by a p-factor of
(1 + A/N0)(1

— M/Gmax) to the power of Gmax/M. Fig. 8.1 (top) depicts such a
situation for the Gmax/M = 2 case above.
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Biomass represents a proportional scaling of size-specific recruitment (N1 1N0)
and B1 = B01p depicted against B0 (for constant p) is still a B&H curve (Fig. 8.1
bottom left). However, biomass represents a non-linear (weight-at-age) scaling of
age-specific recruitment (R = S0N0) and B = B0S0 W(tr)/W0depicted against B0 (for
constant tr and hence, constant S0) is flot a straight line but follows a rather com
plicated curve (Fig. 8.1 bottom right) with resembiance to Fig. 7.4:

r N0/A + 1/S01G/M
B=NwS i i ; B =Nw ; 5 =exp(—Mr)0 °°L N0/A+1 J 0 00 0

The initial slope of this B vs B0 curve is Prnax = exp(Gmax Tr) (for max growth) mul
tiplied by S0, the slope of the recruitment line which becomes the asymptote for
very high initial biomass = 1 for zero growth). If the rate of mortality is
greater than or equal to Gmax, then the biomass at any specific age of recruitment
increases with N0 (or B0) and there is no maximum or minimum on the curve. This
situation of a steady increase towards the asymptote is maintained for M < Gmax
but only if the T-age of recruitment is smaller than ;, a certain mortality-depen
dent age:

2 fGmax+M’ /GmaxM\2
T=—lnl i; S =exp(—MT)=I i; 0MG

M \ G= — M J \ G= + M /
max

When the age of recruitment equals r5, the curve has a saddle-point of B5 occurring
at an initial biomass B05:

lGmax+ M\(G/M)-1 Gmax+ MB=Awi i . B0=Aw ; T=TS 0( ?LÆ 0 G ]\4 r 5

max / max
In the special case, Gmax = 2M, the saddle-point situation occurs at a survival of S
= 1/9 and the biomass at the saddie-point equals the initial biomass 3Aw0.With
M = 0.05 d1 as in Fig. 8.1, this situation of an extended plateau occurs for r5
401n3 which means that the first (important) part of the curve for biomass at ca.
44-days-recruitment bears a resembiance to the B&H curve for biomass at p = 9.

Suppose that the age of recruitment exceeds r as in Fig. 8.1. Then the biomass
curve reaches a local maximum at a certain initial biomass B01 followed by a local
minimum at B02 after which the curve slowly rises towards theS0-asymptotic line.
The important part of the biomass-recruitment curve bears flow a resemblance to
a Ricker type of curve with a moderate descending right limb. The maximum
biomass Bmi occurs at the initial number,

B01 = Aw0(X — \/X2 5’) where X = 1/2[(5_1
— 1)(Gmax/M)

— (5o1 + 1)]

and the following max-min relationships are valid:

B01 B02 = (Aw0)2exp(Mi) ; S’ = exp(M -)
BiniBm2 = (Awo)2exp((Gmax—M)rr)

where B52 denotes the biomass at the local minimum.
The equivalent situation with start-density dependent growth produces the
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same straight line of age-specific recruitment with slope S0 and the biomass be
comes,

B = N0 w0 S0 exp(Gmax;/(1+No/A))

It follows by differentiation (or from the expressions above for density-dependent
growth in the case of zero mortality) that the local maximum and minimum situ
ations occur at

Boi } = 1/2AWO[(Gmax ;—2) Gmax T (Gmax ;—4)]

In particular the saddle-point situation is achieved for; = 4/Gmax producing
the biomass B = Aw0 exp(2(1—2M/Gmax)) for B0 = Aw0. Thus, in the case of Gmax
= 2M, we obtain for ; = 2/M, B = B0 = Arv0 or exactly one third of the corre
sponding biomass in the saddle-point situation of density-dependent growth for;
= 2.20/M. For the equivalent situation to Fig. 8.1 (bottom right), the maximum
biomass is reduced by a factor of five and it occurs at a correspondingly smaller
initial biomass (Bmi = 2885 tons at B01 = 165 tons and Bm2 = 329 tons at B02 = 5730
tons). The asymptote is unchanged.

8.2. Generalized size-dependent vital rates

We are considering a generalized version of the S&C model in the sense that the
rates of changes in size and numbers are described by

dW g0(rv) dN(W)
= —N(w»io(w)

dt 1 + N(w)/A dt

where g0(W) andr0(w) are continuous functions that can be selected in any way
we choose to describe the size-dependency of growth and mortality. Tt is shown
below that size-specific recruitment in this model will always follow the B&H type
of curve.

The shape of the age-specific recruitment curve depends on the particular choice
in functiofls but, as discussed in Ex. 7, the curve must, ultimately, increase towards
the asymptote specified by the initial rate of mortality, i.e. the line through origin
with slope S = exp(—0(rv0);). The curve may reach a local maximum but then
there must also be a local minimum. The shape of the curve will change as the age
of recruitment increases and, hence, as the slope of the asymptote decreases (cf. Fig.
7.4). Again, it is possible to copy the size-specific curve to age using the principles
in B&H Ofi the R&F suggestion. Suppose that t0(rv) operates as an additional
source of mortality on the larvae but only in the size interval (rv0,rv). If the rate of
mortality otherwise may be considered to be constant then the first part of the age
specific recruitment curve will be replaced by a B&H curve. The second part of the
recruitment curve is unchanged except for a multiplicative factor equal to the con
stant survivorship generated by the constant mortality of other causes (cf. Fig. 7.3).

The physiological rate of mortality is derived from the rates above,

— i dN(w) = to(w) (1 + N(W)/A)
N(W) dW g0(W)
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and by integration, utilizing the fractional expansion,

1 _1 1
N(1+N/A) - N - N+A

we obtain the maximum survival,

r Cwo(w) 1 N N0+A
l0=exp—J dw=—

i. .‘ g0(w) j N0 N1 + A

or the B&H recruitment curve,

N1
= 10N0 10E112

; E1 = A/(1 — 1)
i + (i —10)N0IA i +

where E11, denotes the initial number which resuits in half of the asymptotic max
imum of recruitment. This maximum equals the initial slope 10 multiplied by E117,
Na 1 E112.

The equivalent case of start-density dependent growth is obtained by replacing
N(w) by N0 in the growth rate and produces a Ricker curve with initial slope 10,

=N0101’o/A = N010 exp(—No/Emax) ; = —A/1n10

Tt follows that the ratio of maximum recruitment in the B&H curve to the Ricker
curve increases as the maximum survival 1 decreases,

Na/Nmax = e Eii2/Emax = —e lnl0/(1
— l) e = 2.72

The ratio is 12.6 for a survival of 1% and 6.95 for a survival of 10%. The mini
mum value is obtained with zero mortality (p(w) = 0 gives 10 = 1) in which case
both recruitment curves degenerate into the N1 = N0 line. Note that E112 exceeds
E=ax. Fig. 8.2 depicts the situation in which Emax equals A obtained for 1 = 1/e =
0.368.

In order to illustrate the sensitivity of recruitment to changes in the vital rates,
denote the survival N1/N0by 1BH and ‘R in the two cases. Suppose that the rate of
mortality is changed by a constant factor, p = c. The maximum survival changes
to the cth power of its initial value. The Ricker survival, thus, changes according
to the power rule but changes in the B&H case are somewhat moderated compare
to the power rule,

ic
1BH*

= i ÷ (1 — 1C)N/A

and 1BH* > 1BH in the case of a mortality increase (c > 1). For example, the B&H
recruitment at N0 = A in Fig. 8.2 (22.5% survival) is reduced by 26% and not 31%
as prescribed by the power rule in the case of a 25% increase in the rate of mor
tality. Of course, the effect of this dampening of recruitment variations against
changes in the rate of mortality becomes more pronounced when the survival is
low. The B&H survival of 5% at recruitment for N0 = 1OA in Fig. 8.2 is reduced
by 30% due to the 25% increase in mortality. The reduction would have been 53%
if there was no counteractive effect of mortality on growth (i.e. the power-rule).
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Fig. 8.2. Size-specific types of recruitment curves in the case of simple density
dependency for whatever continuous functions we propose in describing size-de
pendent vital rates. It is assumed that the size dependency, in itseif, generates a
cumulative mortality of one across the size-interval considered. This leads to the
straight line of recruitment with slope 0.368. The line is transformed into a B&H
curve if the rate of growth at size is inversely proportional to a linear function
of density, 1+N(w)/A (or, if the rate of mortality is instead proportional to the
same density function). The constant A denotes the number of fish that causes a
50% reduction in the rate of growth at size (or, alternatively, a doubling in the
rate of mortality at size). The equivalent situation of start-density dependency,
obtained by replacing N(w) with N0 produces the Ricker type of curve. The ratio
between the asymptotic recruitment in the B&H curve and the maximum of the
Ricker curve, is 4.30 in the present case.

The difference between the B&H and the Ricker curve in Fig. 8.2 represents an
other aspect of the counteractive effect of mortality on growth. The initial condi
tions are exactly the same in the two situations; N0 fish of size w0 growing at rate
g0(w0)/(1 + N0/A). However, the growth rate at recruitment (size w1)in the B&H
Situation becomes

g0(w1) = g0(w1)
. (1 + (1 —10)N0/A)

1÷N1/A 1+N0/A

where the first factor is the growth rate at recruitment in the Ricker situation. The
growth rate at recruitment for the B&H case in Fig. 8.2 thus exceeds the growth
rate for the Ricker case by a factor of i + O.632N0/A or 7.32 for N0 = bA. Tt is
the cumulative effect of such differences in growth rates that causes a smaller size
specific recruitmeflt iii the Ricker case. The effect is greatest for small initial growth
rates and, hence, for high initial numbers. The B&H recruitment at N0 = 1OA in
Fig. 8.2 exceeds the Ricker recruitment by a factor of 3000.

0 A E1,2

Initial number at size w0 (N0)
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8.3. Generalized density-dependent vital rates
Suppose the rates of change in size and numbers are described by

dw dN(w)=g0(w)H(N(w))
dt

= —N(w)p(w)U(N(w))

where the continuous functions H(N) and U(N) specify density-dependent growth
and mortality. We shall first see that size-specific recruitment always bears an in
creasing relationship to initial number. Proceeding as in Section 8.2, we obtain

N1 dN

_____

i = — i dw = — CUMW0 = constant
JN0 N U(N)/H(N) J0 g0(w)

which, by differentiation with respect to N0, gives

1
—0

N1U(N1)/H(N1) dN0 N0U(N0)/H(N0)—

or the positive slope,

dN1 N1U(N1)H(N0)
>

dN0 N0U(N0)H(N1)

and it follows that recruitment at a specific size follows an increasing curve such
as the B&H type for any choice of the four functions in describing size and density
dependent growth and mortality. For example, in the case of density-independent
mortality, U(N) = 1, and density-dependent growth according to H(N) = H0/N,
we obtain dN1/dN0= (N1/N0)’. That is that the slope of the recruitment curve
equals the survivorship to the power of 1+6. The initial slope must be one and the
curve resembies the B&H type with an asymptotic maximum for any descriptiori
of growth and mortality as a function of size. Exactly the same result would be ob
tained if the rate of growth is instead density-independent, H(N) = 1, but the rate
of mortality is proportional to numbers in the power of 6. Evaluating the integral
gives the equation for the recruitment curve (Harris, 1975),

N
=

N =(6•CUMW)-1’3‘
[1+ (No/Na)6]1I

a 0

This is the 6-power-B&H curve. The equivalent start-density dependent situation
produces the 6-power-Ricker curve which was considered in Ex. 7 in the special
case of 6 = 1/3,

N1 =N0exp(—61(N0/EJ0); E = Na

Note that maximum recruitment, Nmax = Emax exp(—1/6) occurs at an initial num
ber (Emax) that is equal to the asymptotic maximum (Na) in the 6-power B&H
curve. The considerations in Section 8.2 for a 6 = 1 case also apply to this more
general situation. Recruitment at the 6-power B&H curve exceeds recruitment at
the 6-power Ricker case. The difference in recruitment increases with increasing
initial numbers.
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The slope of the age-specific recruitment curve is obtained in a similar way.
From

rR dN rtr
I =—I fL(w)dt

JN0 U(N)N J0
we obtain by differentiation with respect to N0,

i dR — 1 =
— f d10(w)

dt
U(R)R dN0 U(N0)N0 J0 dN0

or

— U(R) R [ — ftd0(w) dw(t)dt
dN0 L U(N0)N0 J0 dw dN0

where the integrand is positive in the situations of interest becaused0(w)/dw is
negative and so is dw/dN0 since we expect a greater N0 to imply smaller size-at
age. The slope, dR/dN0 may, therefore, very well become zero and recruitment
may reach a maximum and perhaps also a minimum. If the growth rate approaches
zero for asymptotic high initial values such as in the 6-power case for density-in
dependent mortality, U(N) = 1, then recruitment ultimately approaches an asymp
tote. Note that in the case of size-independent mortality,a0(w) = 1, the integral in
the above expression for the recruitment slope vanishes and we obtain the simpli
fied situation for density-dependent mortality with positive recruitment slope as
considered by Harris (1975).

8.4. Discussion and conciusions
The basic results of Ex. 8 may be summarized as follows. Whatever continuous
functions we propose in describing the size-dependency of the vital rates, recruit
ment at any specific size follows a Beverton and Holt curve if the growth coefficient
is inversely proportional to a linear function of density. In the more general case
of growth being inversely proportional to the density in some power, 6, we obtain
a 6-power B&H curve (see Section 8.3) which bears a close resembiance to a B&H
curve (6 = 1). The important point is that the result of size-specific recruitment al
ways is a B&H curve if the rate-ratio of mortality to growth (the physiological rate
of mortality) can be separated into a size-dependent factor and a linear density-de
pendent factor. For example, the result is still a B&H curve if the growth rate is in
versely proportional to the square root of a linear function of density but the rate
of mortality increases with density in direct proportion to the square root of the
same linear function. In the case of a general density-dependent factor and a gen
eral size-dependent factor of the physiological rate of mortality, size-specific re
cruitment stil1 bears an increasing relationship to the initial density.

The weight-gaining factor (p = w1/w0) is used for specifying the size interval.
The conversion from numbers at size to biomass always represents a constant
weight-scaling:B1/B0= Ip, Le. the ratio of biomass increase equals the size-specific
survivorship multiplied by the constant weight-gaining factor. The biomass curve,
therefore, has exactly the same shape as the curve for size-specific recruitment.
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This is flot the case for the biomass at age-specific recruitment. In the most simple
case of a constant rate of mortality, the straight line of age-specific recruitment in
the S&C model is converted into the age-of-recruitment dependent max-min
asymptote type of curve for biomass (Fig. 8.1 bottom right but see also Fig. 7.4).
Weight at age represents the conversion factor from numbers at age to biomass. Tt
is, thus, the body-weight at the age of recruitment as a function of the initial rium
ber (or p = W(tr)/W0 as a function of N0 for fixed tr) that is basically responsible
for the complicated behaviour of age-specific biomass in the S&C model. For these
reasons, we also obtain the same shape of biomass curve in the equivalent case of
start-density dependent growth. The initial slope and the asymptotic line are un
changed but the entire curve is compressed compared to the S&C situation. This
is but another example on the effect of independent vital rates in the case of start
density dependent growth. For clarification, let us consider the situation for a cer
tam initial number (or biomass). Since the rate of mortality is constant, exactly the
same number of fish will attain the age of recruitment in the two cases. Howevei
the specific growth rate remains constant at the low initial leve! throughout the
pre-recruit period in the case of start-density dependent growth. The recruits in the
S&C model have gained more in weight because their specific growth rate has in
creased throughout the same pre-recruit period. Tt is this same effect that is respon
sible for the compression of the B&H size-specific recruitment curve into a Ricker
curve in the case of start-density dependent growth (Fig. 8.2). The time required
to reach the size of recruitment and, hence, the cost in cumulative mortality is in
versely proportional to the rate of growth.

If the rate of mortality in the S&C model depends on weight in a simple way
such as a power function, theri the max-min-asymptotic type of curve is obtained
for age-specific recruitment but the max-to-min descending part will be moderated
compared to the case of start-density dependent growth (Fig. 7.4). Such modera
tions are caused by the counteractive effect of mortality on growth in situatiofis of
density-dependent growth. Recruitment in the S&C model is, therefore, less sensi
tive to changes in the vital rates than recruitment in the equivalent case of start
density dependent growth.

Note that the first part of the size-specific recruitment curve is copied to age
under the assumptiofls used by B&H in their treatment of the R&F suggestion (cf.
Ex. 7). The Ricker curve in Fig. 7.3 will, therefore, be replaced by a B&H curve itt
the equivalent case of density-dependent growth.

The S&C model introduces the concept of a physiological mechanism that lim
its the specific growth rate to Gmax even when food is superabundant. If this max
imum limit on the rate of growth is removed, then weight-at-age and, hence, the
first part of the biomass curve at age-specific recruitment will change drastically.
Suppose for a treatment of this situation that we remove the number 1 in the de
nominator of S&C’s G(t) = Gmax/(1 + N(t)/A) and, ifistead, consider the specific
rate of growth to be inversely proportional to the density itt some powei i.e.

dw(t)
=H0(N(t)) w(t) ; N(t) = N0 exp(—M(t — t0))
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We already know that size-specific recruitment follows the b-power B&H curve
(Section 8.3), which changes to the b-power Ricker curve in the equivalent case of
start-density dependent growth (Section 7.5). Age-specific recruitment is the same
as in the S&C model, R = N0S0.The new weight-at--age is obtained by integrating
the growth rate and we obtain a double-exponential relationship:

w(t) = w0 exp{
H0N0

[exp(6M(t — t0)) — 1]} ; p(t) = w(t)/w0

Evaluating B(t) = B0S0p(t), the biomass at the age of recruitment produces a
curve that (for any positive value of the power ) reaches a minimum and then rises
towards the asymptote with slope S0 for very high initial biomass (P(tr) = 1). The
curve does flot reach a local maximum as in the S&C situation (Fig. 8.1 bottom
right) because the growth rate and, hence, the weight of the extremely few recruits
increases beyond any limit when the initial number approaches zero. This unreal
istic situation again (Section 7.5) illustrates the rieed for incorporating a consistent
account of food consumption in the models (see Ex. 9).

Exampie 9: Sizespecific recruitment to meet a food-consumption requirement
in the Shepherd & Cushing (1980) model
The basic idea in a quantification of the Ricker & Foerster (1948) suggestion is
that the reduction in the rate of growth at higher densities is caused by competition
for food. A balance between the amount of food available and the actual rate of
food consumption should, therefore, constitute a basic requirement for any treat
ment of the R&F suggestion. It is important to note that such a requirement for a
consistent amount of food represents a new dimension to the classical recruitment
curves derived from density-dependent growth (Exs 7 and 8).

The purpose of this example is first to put focus on the biomass account using
the S&C quantification of the R&F suggestion as an example. The next step is to
quantify the food situation during the period of time required for the individual
larva to gain a factor ofp in weight in the S&C model. We shall do this in the sim
plest possible way by assuming that the total amount of food consumed by the
year-class is constant under average environmental conditions. The second aim of
this example is then to illustrate the dramatic change in the shape and the stability
of the recruitment curve that will occur as a result of such a requirement for a con
sistent food consumption.

9.1. Biomass account
Let 1(t) denote the specific rate of food consumptiofl and k the specific rate of fast-
ing metabolism, i.e.

1(t) = y’(k + G(t)) or G(t) = yI(t) — k

where y is the assimilation efficiency and G is the specific rate of growth in the
S&C model:

G(t) = Gtnax/(1 + N(t)/A) ; = Gmax/(1 + N0/A) , N(t) = N0 exp(—MT)
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Age t is replaced by time T = t — t0 whenever it is convenient for keeping a short no
tation. With these amendments to the S&C model, we obtain the rate of food con
sumption by the year-class,

C(t) = B(t)I(t) = yB(t)(k + G(t))

which, by inserting the expression for biomass (cf. Ex. 8.1),

B(t) = N(t)w(t) = B0 exp((Gmax— M)’r) [G0/G(t)]”M

takes the form,

C(t) = yB0G0exp((Gmax — M)T) (1 + k/G(t)) [G0/G(t)](GJM)-

In the particular case of M = Gmax, the (total) rate of food consumption, C(t), ex
hibits a decreasing relationship to age (cf. Section 9.3). If the rate of mortality is
smaller than the maximum specific growth rate, C(t) may still initially decrease but
will reach a minimum at an age tmjfl, after which the rate of food consumption in
creases (ultimately exponential) with age. The age tmjfl can be derived from the fol
lowing requirement obtained by differentiation,

G(tm,n) = 2M/(1 + [1 + (1
— M/Gmax)4M/k]) :Min C at age tmin.

Table 9.1 gives an example of the case of M = Gmax/2. The assimilation efficiency
is set to 70% for larval fish (cf. Ex. 10) and the rate of fasting metabolism is put
to 3% per day. The year-class is assumed to comprise 1013 larvae of weight 0.5 mg
(i.e. a biomass of 5000 tons) at the onset of feeding. The biomass reaches a mini
mum after ca. 33 days when the specific growth rate has increased to M = 0.05 d-1
(see also the graph in Fig. 8.1, top right). However, the rate of food consumption,
C, reaches a minimum after 18 days when G(t) = 0.0324 or N(tmin)/A = 2.08.
This minimum occurs because the fish cannot lose weight in the S&C model. At
very high initial numbers, G0 0 and the specific rate of food intake is initially
equal to the maintenance rate, ‘y’k or 4.3% per day. The total food consumption
will, therefore, decrease with the decimation of the year class as long as the effect
of increasing food consumption per larva is small. If the initial number is smaller
than 2.08A (or 4.05 1012 in the present example), such a minimum will flot occur.

The amount of food eaten is obtained by integrating C(t), i.e.

F(t,t0) = ftC(x)dx = ‘ + G(x))dx

The part of the food consumed that is flot used for growth (i.e. specific dynamic
action, fasting metabolism and defecation) is excreted one way or another and con
stitutes a loss of biomass. The total rate of excretion thus becomes dQ/dt = B(I —

G) and the cumulated loss is obtained by integration,

Q(t,t0) = fB(x)(I(x) - G(x))dx = F(t,t0)
-

Natural mortality constitutes the second loss term. The rate of biomass lost in
predation (or due to other possible causes of natural mortality) is dP/dt = MB and
the cumulated loss becomes,

P(t,t0) = Mj’tB(x)dx
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Table 9.1. Example of biomass account in the S&C model with an assimilation efficiency of y = 0.7
and a specific rate of fasting metabolism of k = 0.03 d. Note that time 80.6 d represents the P-situation
in Figs 8.1 and 9.2. The formulas for the population characteristics are given at the bottom of the table
for this M = /2 Gnrnx case (N0 = l0’, w0 = 0.5 mg, A = 1.9476 1012, M = 0.05 d).

Time Nomber Specific Weight Biomass Rate of Food Losses
growth gaining food eaten

rate factor consumption Mortality Excretion
T N G p B C F P Q
d 1011 % d i0 g iO g d iO g i0 g i0 g

0 100 1.6 1.0 5.0 0.33 0 0 0
10 61 2.4 1.2 3.7 0.29 3.1 2.1 2.2
20 37 3.5 1.6 3.0 0.28 5.9 3.8 4.0
30 22 4.7 2.5 2.7 0.30 8.7 5.2 5.8
40 14 5.9 4.2 2.8 0.36 12 6.6 7.6
50 8.2 7.0 8.0 3.3 0.47 16 8.1 9.7
60 5.0 8.0 17 4.2 0.66 22 10 12
70 3.0 8.7 39 5.9 0.98 30 12 16
80 1.8 9.1 95 8.7 1.5 42 16 22
90 1.1 9.5 240 13 2.4 61 21 31

100 0.67 9.7 630 21 3.8 91 30 45

Notation for = 2M case: S = exp(—MT) , BA = B0/(1 + N0/A)2, NA = N0/A

N=N0S ; G=2M/(1 +NAS) ;

B=BA[S+NA2S÷2NA]

C =T1B[(2M + k) S1 + kNA2 S + 2(M + k)NA]

F = ‘Ï1BA[(2 + kIM) S1 + 2(M + k)NAT — (k/M)NA2S —2 + (NA2 — 1)k/M]

P = BA[S ÷ 2M NAT— NA2 S + NA2 — 1]

Q = F—2B[S + MNAT— 1]

In the special case, Gmax = 2M, the integrals are easy to evaluate analytically (see
Table 9.1 bottom). Table 9.1 gives an example of the development in F, F and Q
for the first 100 days. The biomass account can be expressed as B = B0 + F — P —

Qor

Food eaten = Biomass increase + Mortality loss + Excretion

For example, after 30 days, F = 8728 tons, P = 5230 tons and Q = 5757 tons
which gives a biomass reduction of 2259 tons. This, of course, does flot mean that
there has been no production. The population comprises 22.31 lO larvae after
30 days. Their biomass has increased from B01 = 1115 tons (w0 = 0.5 mg ;p = 1)
to B = 2741 tons (w = 1.23mg; p = 2.457) during this month. The remaining 77.69
1011 larvae of initial biomass B02 = 3885 tons have all suffered natural mortality
during these 30 days. Their total weight at death equals P = 5230 tons. We may,
therefore, alternatively write the biomass account in terms of production as
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F = (B — B01) + (P — B02) + Q, or

Production (retained) (B — Bo1): 2741 — 1115 = 1626 tons ( 19%)
Production loss (P — B02): 5230 — 3885 = 1345 tons ( 15%)
Excretion loss: 5757 tons ( 66%)

Food eaten (during 30 days): 8728 tons (100%)

The biomass account after 80.582 days when the live larvae (1.78%) have gained
a factor ofp = 100 in weight (referred to as point P in Figs 8.1 and 9.2) has changed
to the following,

Biomass increase (B — Bo): 8895 — 5000 = 2895 tons ( 9%)
Predation loss (F): 16273 tons ( 38%)
Excretion loss (Q): 22592 tons ( 53%)

Food eaten (F100): 42760 tons (100%)

The biomass has increased by only Ca. 2900 tons at the cost of ca. 43000 tons cope
pod nauplii (or other types of food organisms). The alternative representation
below more clearly states that the gross production efficiency is Ca. 47% and that
the actual biomass (taking mortality into account) represents a production efficien
cyof2l%:

Production (retained): 8895 — 88.95 = 8806 tons ( 21%)
Production loss: 16273 — 4911 = 11362 tons ( 27%)
Excretion loss: 22592 tons ( 53%)

Food eaten (during Ca. 81 days) (F100): 42760 tons (100%)

Note the dramatic increase in food consumption and biomass from day 80 to 100
in Table 9.1. This is because the population has been reduced to such a low level
that food consumption and growth almost take place at the maximum rates. The
maximum specific rate of food consumption is Imax = ri(k + Gmax) = 0.13/0.7 or
0.186 of which 53% is used for growth and 46% is excreted. The initial rate of
food consumption is almost three times less, 1 = ‘)r1(k + G0) = 0.0657 and only
24% is used for growth while 76% is excreted.

9.2 Critical recruitment points

Focus is now placed on the B&H type of recruitment to gain a factor of p in weight
with the additional requirement that the amount of food eaten must equal a certain
value, F. In Table 9.1 and Fig. 8.1 with p = 100 and N0 = 1013, point P represents
such a point if F100 = 42760 tons. The resulting recruitment curve formed by such
points is dealt with in the next section. We are here interested in obtaining the crit
ical points that represent the boundary of the new recruitment curve.

The first critical point, C, is obtained when growth takes place at the maximum
rate. This situation occurs when A = co and the B&H curve degenerates into the
straight line,

= N0 exp(—MT1)= N0pM n ; A = oo
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We seek that particular point (N0,N1)= (Ec,Nc) on the line at which the food eaten
equals F. The rate of food consumption is obtained from the expression given in
the preceding section by inserting G(t) G0 = Gmax for the present case of expo
nential growth. That is,

C(t) = Y1B0(G=ax + k) exp((Gmax M)T)

and the food eaten is obtained by integration,

F =y1Ew0
Gmax ± k

[p1MIG
— 1]

max

or

Ec=
Gmax —M

/[p1-M/G1] ; NcEcPM1
w0 Gmax + k

The interpretation of the Fc-situation is as follows. If the initial number equals Fc,
the larvae take in food at the maximum rate, ‘max = y-1 (k + Gmax), and consume
the total amount, F, during T1 = Gmax1 ln p, the time required for gaining a factor
p in weight. If N0 < Ec, the amount eaten will be less than F since the larvae cannot
grow faster and recruitment will be determined by the straight line connecting
point C with the origin.

Note that Ec exhibits an increasing relationship to M. At zero mortality, Fc
takes on its minimum value,

yF, Gmax ,, i 7r u
co = . RP — 1) , lNcO = ‘-jco , =

W0 Gmax + k

Since we are not concerned with mortality-situations in which the biomass of the
year-class cannot increase, the maximum limit of Fc is considered to occur in case
of M = Gmax,

yF, Gmax /1 u i . ,r r= / Ifl? , “cG = 1-’cG’ /) , iVi =
w0 Gmax + k

The ratio of critical initial numbers for these two extreme situations of mortality,
therefore, becomes

E p—i — J21.5 , p=100

Eco - lnp - 137.6 , p=200

and the corresponding ratio of critical recruitment is

NcG — Ecc 1
— f 0.215 , /3 100

Nco - Eco /3 -

0.188 , p = 200

This is but one way of illustrating the effect of the food criterion on the stabi
lization of recruitment against variations in the rate of mortality. When the rate of
mortality increases from zero to the physiological maximum of the specific growth
rate, the critical initial number (for point C) increases by more than a factor of 20
in the case of p = 100 but the recruitment reduction is less than a factor of 5.
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The second critical point, B, is determined by EB, the (high) initial number at
which the biomass of the surviving larvae is equal to the initial biomass. This status
quo situation occurs at the point of intersection between the B&H curve and the
line representing a survival of p’. We obtain the relationship,

p_pM/G.

EB/AB = pM/G.
— i

NB = EB! P

where AB denotes that particular value of the constant A in the S&C model which
is consistent with the requirement for food consumption. Note that point B coin
cides with point C in case of M = Gmax.

9.3. The recruitrnent curve
The starting point for obtaining the food-specific recruitment curve connecting the
critical points C and B is the size-specific recruitment curve for constant A in the
S&C model, i.e. the B&H curve described by the equation (cf. Ex. 8.1-8.2),

-M/ Gm
= N0 ; N =N0/A(N0)

i + (1 — p-M/G)N0/A(N0)

With the additional food-criterion to size-specific recruitment, A is no longer a
constant but depends on the initial condition (N0 and w0), the size at recruitment
(p), the amount of food (Fn) and the specification of the vital rates (‘y, k, Gmax, M).
Suppose that the entire model is specified by constants, then A becomes a function
of N0 and the equation above will describe the food-specific recruitment curve. To
see how this procedure works, we first consider the simplest possible case of M =
Gmax. The biomass decreases from B0 towards B as time elapses,

B(t) = B El + NA exp(—MT)] ; B = B0/(l + NA) , Gmax = M

and the rate of food consumption by the year-class will consequently also decrease
towards a constant, ‘max B,

C(t) = y1 B, EM + k + k NAexp(—M’r)] , G= = M

Integrating over the time required to gain a factor ofp in weight, T1, yields the food
criterion,

F =y-1B{(M+k)r1+ (k/M)NAE1—exp(—MT1)]};T1 = —M-11n(N1/N0),Gmax = M

Tt appears from this equation that it is flot possible to obtain an analytical expres
sion for A as a function of N0. Howevei we may express A or NA as a function of
N0 and N1 based on the food criterion. Inserting this expression into the B&H
equation above yields the following transcendental equation:

o = N0/N1
—

p
—

(p — i) P + k/M)ln(N1/N0)+ yF/(N0w0)1
Gmax = M

L (k/M)(1 — N1/N0)— yF/(Nowo) j

This is the equation for food-and-size-specific recruitment in the S&C model in
case ofM = Gmax. One cannot obtain N1 directly. For an initialnumber, N0, recruit
ment, N1, must be obtained as the zero of the equation by iteration. Alternatively,



SIZE-BASED RECRUITMENT THEORY EXAMPLES 129

one can rearrange this recruitment equation to express the initial number as a func
tion of the survivorship, i = N/N0.This gives N0 for a selected I and hence, N1 =
1N0. The caiculation of N0 has, of course, no meaning for N0 < E (or i> 1/p) be—
cause A(N0) then becomes negative (i.e. the specific growth rate exceeds Gax).

A
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Fig. 9.1. The food-and-size-specific recruitment curve (heavy outlined)
for F100 = 42762 tons and M = = 0.10 d’ in the S&C model elabo
rated to account for an assimilation efficiency of 70% and a specific rate
of fasting metabolism of 3% per day. N0 denotes the number of firsr feed
ing larvae with body-weight 0.5 mg. The maximum survival is hp ur
1%. The critical point of max growth (i.e. 10% per day from onset of
feeding unril point C is reached Ca. 46 days latet) also represents the sta
tus quo point (B) for biomass. Three B&H curves for recruitment to
weight 1/20 g (p = 100) are also shown (A = 1.28 10). The amounr of
food eaten is equal to 42762 tons only at the points of intersecrion de
noted respectively by 1(55 days), 11(65 days) and III (77 days). At point
I, the initial 2E larvae begin to grow with 3.9% per day. A redoubling
in initial numbers to 4E ar point II reduces the initial growth rate to
1.5% (and to 0.5% at point III). The growth rate at recruitment is Ca.

9.9% in ali three cases.

Fig. 9.1 shows the recruitment graph in the case ofp = 100. The food-criterion
was simply determined in this example by requiring that E = 1013, i.e. from the
point-C-equation in section 9.2 or from the F-equation above putting NA = 0
(A = oo),

F = r’woEc(l + k/M)lnp = 42762 tons ; = M-1lnp, Gmax = M

This case of M = Gmax is flot so interesting from a recruitmeflt point of view be
cause the biomass cannot increase. The situation changes when the rate of mortal
ity is smaller than the maximum specific rate of growth. The C and B lines will
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separate and open a potential recruitment window of biomass increase. For the
most simple treatment of this situation, suppose that Gmax 2M. The survivorship
for the B&H recruitment situation becomes,

N1/N0= exp(—MT1)= p-”2/(1 + (1
— , Gmax = 2M

and the F-criterion is obtained from Table 9.1, inserting T

yF(1 +

N0w0[(2 + k/M)(N0/N1—l) — 2(1 + k/M)NA1n(Nl/NO) + (k/M)NA2(1—N1/N0)]

The transcendental equation for food-specific recruitment is obtained by eliminat
ing NA from the two equations above. This is a straight forward procedure and the
details are omitted here . Fig. 9.2 shows the recruitment curve in the same (p = 100)
case considered in Fig. 9.1, the only difference being that the rate of natural mor
tality is reduced from 10% to 5% per day.

The equation for the critical point C becomes,

E = (yF/w0)/ [(2 + k/M)(p”2— 1)] ; = E p”2 , Gmax = 2M

Fig. 9.2. The food-and-size-specific recruitment curve for F100 = 42762
tons and M = 1/2 Gx = 0.05 d-1 in the same specification of the elab
orated S&C model as in Fig. 9.1. Biomass and recruitment character
istics underlying point P are shown in Fig. 8.1 (see also the discussion
of the biomass account based on Table 9.1). C is the critical point of
maximum growth which represents a factor of p”2 = 10 in biomass in
crease. Point B, representing status quo in biomass, occurs at an initial
number, EB = 1.56 1013, which is 6.1 times higher than E = 2.56 1012.

However, point B represents a recruitment reduction of only 39% com
pared to maximum recruitment at point C (i.e. NB = 0.61 Nr).
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The equation for status quo in biomass (point B) is obtained by replacing NA
with p112, and N1/N0with pr in the F-equation, i.e.

yF M (p112 + 1)2
— G —EB = ‘ NB — EB P , max —

2w0 M+k p—1+p1/2lnp

Hence, the ratio of EB to E is independent of the amount of food eaten, the assim
ilation efficiency and the initial body weight (i.e. F, y and w0),

EB/EG = [(M + k/2)/(M + k)](p112 + 1)(p — 1) /(p — 1 + p112 lnp), Gmax = 2M

The corresponding extreme in recruitment variation is also exclusively determined
by p, k and the Gmax = 2M leve1,

NB/Nc = p112 E0/E , Gmax = 2M

In the present example with M = 0.05 and k = 0.03 per day, the E-ratio increases
from ca. 6 in the p = 100 situation to Ca. 22 in the p = 1000 situation. However,
the recruitment or the N-ratio increases only from 0.61 to 0.69. That is a C to B
reduction in recruitment of about 35%. These results (for a ten-fold variation in
the weight gaining factor, p) are rather iflsensitive to changes in the specific rate of
fasting metabolism (k). When k iflcreases from 0 to 5%, the C to B recruitment re
duction increases from ca. 20% to 40%.

9.4. Discussion and conciusions
Introducing the F-criterion completely changes the shape of the size-specific re
cruitment curve. The convex shape of the B&H recruitment curve for constant A
in the S&C model is reversed into a curve of concave shape (in the recruitment
window determined by the critical B and C lines) when A is interpreted as a pa
rameter related to the abundance of food through the F-criterion. Such a concave
shape is, perhaps, to be expected because the food consumption requirement
makes A a function of N0 (when the model otherwise is specified). We are, there
fore, really dealing with a combined case of density and start-density dependent
growth and the curve shape in Fig. 9.2 may, indeed, be interpreted as something
in between the B&H and the Ricker type of curves. This does flot mean that the
Ricker type of curve (created by start-density dependent growth, see Ex. 7) is main
tained completely when the F-criterion is introduced. The F-criterion creates an
important mortality-dependent effect on growth and the result can, therefore, also
in this case be interpreted as a combination of start-density and density dependent
growth (see Ex. 10).

The fact that the food-criterion makes A a function of the rate of mortality has
some important consequences for recruitment stability. We may, for example, con
sider the situation with an initial number of 2.1013 larvae in Fig. 9.1 (i.e. point I).
The rate of mortality is 0.10 d1 and the situation is described by A = 1.28 10’ in
the S&C model as indicated by the shown B&H curve. The survival is ca. 0.4%
and the question is by how much this survival will increase when the rate of mor
tality is halved. If mortality had no effect on growth, the change in survival would
follow the power-rule, 0.0041/2 and, hence, increase survival to 6.3%. In the S&C
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model (cf. Ex. 8.2), the effect of density-dependent growth is a modification of the
increase and the survival becomes 4.2% (with half the rate of mortality but with
unchanged A). However, the F-criterion changes A to 0.138 1013 and the survival
will only increase to 0.7% (see N0 = 2 10’ situation in Fig. 9.2). In other words,
the survival increases by a factor of 16 if growth is independent of mortality. This
factor is reduced to 11 in the S&C model but becomes less than 2 with the present
requirement for a consistent amount of food. It can be conciuded that the require
ment for a constant amount of food eaten stabilizes recruitment against fluctua
tions in the rate of mortality.

The investigation of the recruitment ratio for the critical points in the M 1/2

Gmax case elucidates the other aspect of stability. A 10-20 fold increase in initial
number (depending on the choice ofp) implies only a 30-40% reduction in recruit
ment.

This also means that the dynamics of the recruitment situation can be under
stood by considering the critical points. The choice of p will be discussed later. For
the moment, we shall consider the situation for a specific p. The slope of the B-line
for status quo in biomass is hp and, thus, independent of the vital rates. The slope
of the C-line (which constitutes the first part of the recruitment curve) equals the
slope of the B-line to the power of the instantaneous rate ratio of mortality to max
imum growth (i.e. pM/*). The recruitment window is, therefore, closed when M
= Gmax (B and C line coincides, see Fig. 9.1) and gradually opens when M decreases
(see Fig. 9.2 for a M = 1/2 Gmax situation). The maximum opening (or recruitment
square) is obtained at zero mortality, in which case the slope of the C-line is one.
Note that this window dynamic, inciuding the position of the C-point, will be ex
actly the same in the equivalent case of start-density dependent growth because
point C is specified by the maximum growth rate.

Now, for constant vital rates, points B and C will move along the respective lines
in direct proportion to F, the amount of food eaten. This offers one possible be
ginning point for explaining fluctuations in recruitment. As an example, we con
sider Fig. 9.2 which represents a recruitment situation with F100 = 42762 tons. With
an initial population of 10’ fish (see point P representing a survival of 1.78%), re
cruitment will increase by a factor of 5.6 (i.e. 10/1.78) if the food available ifl
creases by a factor of 3.9 (because point P moves up and becomes the new C-point
when F100 = 167143 tons). However, recruitment at initial numbers below E
¼ 1013 is flot affected by an increase in the amount of food available. But if the
rate of mortality is halved (from 5% to 2.5% per day), then the slope of the C-line
increases by a factor of 3.2. Recruitment in the density-independent domain (the
collapse zone below E) will, therefore, increase by a factor of 3.2 if the mortality
reduction is accompanied by an increase in food. If the amount of food remains
constant (Le. 42762 tofls), then the mortality reduction causes a reduction in E
as well and recruitment will increase (but only by a factor of 3.2 for initial numbers
below the new = 1.1 1012).

One consequence of food-afid-size-specific recruitment is, therefore, that fluc
tuations in year-class strength at medium to high initial numbers mainly are de
termined by fluctuations in the amount of food available. The chance of the oc
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currence of a good year-class is considerably reduced at low initial numbers be
cause the survival is high (for N0 E) and unaffected by an increase in food avail
ability.

The interpretation of p and the F-criterion remain to be considered. The begin
ning of the size interval has been interpreted as the weight at the onset of feeding.
This does not mean that the onset of feeding necessarily must be considered the be
ginning of a critical period. Focus is rather placed on the end of a critical period
in the sense that the biomass of the year-class at some body-weight must exceed
the initial biomass at the onset of feeding. This is not a demand for increasing
biomass right from the onset of feeding. The biomass may bear a decreasing rela
tionship to age or size initially (cf. the P-situation in Fig. 8.1 and Table 9.1) but the
reduction must be regained before size pw0 is reached. Tt seems sensible that this
increase in biomass must have taken place at or before the occurrence of metamor
phosis (say, at p 200). In the present considerations, we have used typical pa
rameter values for larval fish in temperate waters such as for North Sea herring
(with relatively big eggs). The choice p 100 represents a qualified guess of the
minimum ratio of larval size to prey size. In this interpretation, p designates a crit
ical period during which the larvae depend entirely on the production of copepod
nauplii as food. The part of this production that is available as food for the year
class has here been treated as a constant, F, to represent the average situation.
These points are discussed in more detail elsewhere. The basic point, however, is
that the incorporation of an account of food consumption (Section 9.1) enables us
to compare different recruitment Situations in a consistent way from a mass point
ofview. At an initial number, E, the biomass increases by a factor ofp1_M/. This
factor gradually decreases as the initial number increases until the status quo Situ

ation is reached at E5. The cost of recruiting this biomass of fish sized pw0 is, in

every case, a food consumption of F. Other typeS of density-deperident mecha
nisms (such as mortality caused by starvation) are likely to play a major role in
regulating recruitment at initial number in excess of EB. This domain of very high
initial numbers is flot dealt with in the present model.

The above considerations represent but one interpretatiofl of the model. Other
food-criteria can be used (see Ex. 10.3). Density-dependent growth in other stages
of larval or juvenile life can be considered instead or at the same time in a consec
utive application of the model. However, the argument may be raised that the ex
ponential basis of the S&C growth model provides an unrealistic description of
growth for most species in particular for the juvenile stages. One could also argue
that the assumption of a constant rate of natural mortality in the S&C model is
unacceptable except perhaps for adult life. Apart from the usefulness of simple
models and the fact that statements such as unrealistic or unacceptable models
must be related to the aim of modelling in each particular caSe, it is important to
note that the food-and-size-specific recruitment curves obtained in this example
also are valid for a much broader class of growth and mortality models than ex
ponential growth and constant mortality.

For clarification, we consider generalized size-specific vital rates, g0(w) and
0(w), producing the size-specific survivorship 10(x), x = w/w0.The final formu
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lation of the rate of growth is obtained by multiplyingg0(w) with the S&C density
dependent factor, i.e.

g(w,N) =g0(w)/(1 + N/A)

Size-specific recruitment in this model is also described by the B&H curve (see Ex.
8.2) and inserting the B&H survivorship in the size-version of the food-equation
(see Eq. (16)) gives the F-criterion,

F = B0 f(GGE(x))110(x)/[1 + (1 -10(x))N0/A]dx

where GGE is the gross growth efficiency. Suppose that the rate of fasting
metabolism is proportional to g0(w). The relationship for the reciprocal grass
growth efficiency becomes,

GGE(x)1 = y-1(l + k1g0(w)/g(w,N)) = y-1 (i + k1
+ (1 l))N/)

implying that F is completely specified by the survivorship l0(x). For example, in
the allometric model considered in Ex. 10 (with k1 k/Hmx),

g0(w) = Hmax w1’” and t0(w) = qw-’”

the survival becomes independent of the value of the exponent m,

l0(x) = -q/Hmax
; x = w/w0

This actually means that whether we consider the S&C model with m = 0 (and
Gmax = Hmax, M = q) ar some other situation such as m = 1/4 (see Ex. 10), the
B&H recruitment curve (Section 9.3) and A(N0)obtained from the F-requirement
remain unchanged because they are based an one and the same survivorship 10.
Figs 9.1 and 9.2 represent, therefore, food-and-size-specific recruitment curves for
the general allometric model. The vital rates may even be multiplied by some ar
bitrary size-specific function. The size-specific recruitment curves do flot change as
long as the instantaneous rate ratio of mortality to growth remains constant.

Tt is interesting to note that the specific rate of growth in the generalized alla
metric version of the S&C model, G(w,N) = Hmx w/(1 + N/A), will flot neces
sarily increase as the year-class diminishes because of the factor w”1. The final
point concerns age-specific recruitment which is constant and, thus, independent
of any food-criteria in the S&C model. This is flot the case for the general allomet
ric model (see Ex. 8.4). It is only numbers at size that remain unchanged for dif
ferent versions of the allometric model. Weight at age and hence, numbers and
biomass at age depend on the specification of the allometric model (i.e. an m). The
food-and-age-specific recruitment curve will, therefore, depend on the exponent m
(see also Ex. 10). An investigation of these matters calls for a numerical evaluation
of the integrals. Tt is only in very few cases of density and start-density dependent
growth such as those considered in the present example that analytical expressions
for recruitment can be evaluated.
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Exampie 10: A simple allometric model ofgrowth and mortality of larval fish
The B&H theory with constant rate of mortality and the von Bertalanffy growth
equation (VBGE) constituted the beginning point for quantifying the vital rates of
larval and juvenile life in Ex. 4. Tt was necessary to take into account that the rate
of mortality bears a decreasing relationship to the size of the fish. The situation
was treated by considering p(w) to be inversely proportional to length or to the
cube root of weight (Ex. 4.3). Tt was also recognized that G(w), the specific rate of
growth, exhibits a close relationship to mortality (Ware, 1975). However, the con
sequence of G(w) ° w-’13 is a rapid reduction in the specific rate of growth during
the first months of life which seems to be in conflict with present knowiedge on
early life dynamics (Ex. 4.4). In the considerations of B&H on the R&F suggestion,
the situation of instantaneous vital rates being proportional to w-113 was also con
sidered (Ex. 7.3) and it was mentioned that a power less than one third would re
duce the fall in G. It is the need for such a more general allometric model that con
stitutes the beginning point in the present example.

The basis of the allometric model (Ware, 1975) is derived directly from mass
balance in the general predation process of the pelagic ecosystem using simple par
tide-size distribution (psd) theory (Section 10.1). As an example, the larval model
is used on Atlantic herring and cod. However, the main application of the allomet
ric model in the present context is the continuation of the treatment of the R&F
suggestion with start-density dependent growth in Ex. 7. The purpose is to exam
ine the effect of requirements for a consistent amount of food consumption on size
specific recruitment. Section 10.2 deals with the F-requirement to the amount of
food eaten by the year-class that is considered in Ex. 9 in the case of the same al
lometric model but with the S&C density-dependent growth factor. In Section
10.3, the food criterion is changed to a constant average rate of food consumption
during the time required to gain a factor of p in weight. Some comments on age
specific recruitment to meet the F-criterion and an F,-criterion are inciuded in the
discussion (Section 10.4).

10.1. Model basis
First, we consider the situation in which the abundance-at-size of all organisms in
the sea, in the first approximation, can be described by an allometric model (see
Fig. 10.1). Assume that the natural mortality in this system is caused mainly by
predation and that a predator eats prey of a specific fraction, 1/p, of its own size.
Mass balance in this predation process must at any size express that the rate of
prey-biomass removed by predation equals the rate of food consumption by the
predators (see the consumption arrow in Fig. 10.1). That is

wt(w) . Prey Number = i(pw) . Predator Number

where i(pw) denotes the rate of food consumption (of prey sized w) by a predator
of size pw.

The abundance ratio of predator to prey is constant in this allometric model
(equalling the size ratio of predator to prey, p, to the power of one plus the slope
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THE PELAGIC ECOSYSTEM
Food

og weight

Fig. 10.1. The predation mortality (p or the food consumption (i) process in the
pelagic ecosystem described by an allometric model for abundance at size (for ali
species combined). In this interpretation, the weight-gaining factor, p, describes the
size-ratio of predator to prey. The food-arrow shows the basie requirement for mass
balance in the predation process at any size and through any interval of time:
Organisms suffering predation mortality constitute the food consumption of the
predators. Furthermore, in metabolic growth modeis, the rate of food consumption
is proportional to the body-weight in some power. The requirement for mass balance
then implies proportionality between 1(w) and p(w), the instantaneous tates of food
consumption and mortality. This constitutes the basis for using the same exponent
in describing growth and mortality as allometric processes in the present example.

of the line in Fig. 10.1). The numbers in the equation above for mass balance may,
therefore, be replaced by a constant of proportionality and we can write

wu(w) cc i(pw)

The rate of food consumption is usually considered to be proportional to the
weight in some power. We put

i(w) = hw1 or 1(w) = hw”

It flow follows from the relation of mass balance that the instantaneous rate of pre
dation mortality is proportional to the specific (instantaneous) rate of food con
sumption, I = i/w, i.e.

= constant . 1(w) =

where the constant of proportionality has been denoted q/h.
The next step is to calculate the growth rate from the rate of food consumption

and the requirements for metabolism. Let 3 denote the fraction of food that is ab
sorbed and a the fraction of absorbed food that is lost in specific dynamic action
etc. That is, the fraction y = (1

— a)13 of the food is assimilated. Let further kwi_m
denote the rate of fasting metabolism. The coefficient of growth becomes,

H=yh—k ;
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and the allometric model of growth and mortality of larval fish takes the final
form,

g(w) = Hw1’”

p(w) = qur”

It is this model with H, q and m as (stage-specific) constants that is used through
out this example. The gross growth efficiency, GGE = g(w)/i(w), is determined by
y, the assimilation efficiency, and H and k, the coefficients of growth and fasting
metabolism:

GGE=H/h=yH/(k÷H) ; h=r1(k+H)

Some consequences and applications of the allometric model will briefly be con
sidered. The time required to grow through the size interval, beginning at weight
w0 and ending at weight w, pw0, becomes

(p-1) ; m0
imH

i
[--lnP ; m=0

and the survivorship is independent of the choice of power m:

11 = l(w,,w0)= p-q/H; p = w,/w,

Note that the dimension of q or H is MASS’” TIME’. These formulas are valid for
any positive value of p because here p simply denotes an auxilliary used to specify
the weight interval considered. In the present example, the beginning of the weight
interval is related to the onset of feeding.

The model may also be applied to the egg and yolk-sac stages. During these
stages, we assume a maximum efficiency of energy transfer. That is, yolk is com
pletely absorbed (l3max = 1) with the minimum cost of conversion into tissue (amin

= 0.1, cf. Kiørboe 1989). This gives a maximum assimilation efficiency of ym =

0.9. The rate of weight loss is, in a first approximation, equal to g(w) — i(w) and
the reduction in weight during the egg and yolk-sac stages is, therefore, described
by the allometric model with a negative value for H, i.e. the survivorship becomes

= l(wo,w) = (w0/w)_q!He
; Et,, = [(1 — Ymax)he + k]

where w,, denotes the egg weight and index e otherwise refers to the egg and yolk
sac stage. Note that the weight-gaining facto p = w0/w,,, here is less than one.

As an example, we consider a larval model with m = 1/4, H,, = —0.09 (rig dry
wt)°2’d1 during the egg and yolk-sac stages, H = 0.25 (g dry wt)°2’d1 from the
onset of feeding and q = 0.15 (pg dry wt)°2’ d’ for ali stages. The value of H is
obtained by assuming h = h,,, k = 0.05 (g dry wt)°25 d’ and a general value of /3
= 0.8 for the fraction of food absorbed (Andersen & Ursin, 1977). Putting a
0.12 gives an assimilation efficiency of y = 0.7 and h = 0.43 (pg dry wt)°25 d1. If
a 30% reduction in weight is adopted as the death-criterion of starvation, then
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k = 0.05 means that a larva of 100 pg dry-weight can sustain starvation for about
three weeks whereas a 25 ig dry-weight larva only can sustain starvation for about
two weeks (obtained by using T-formula with H = —0.05 and p = 0.70).

The model cannot be rejected immediately as the following example will show.
Using the values quoted above for m, H and q and body-weight data in g dry
weight on Atlantic herring and Atlantic cod from Houde (1987), we obtain the fol
lowing results. A herring egg of weight We = 225 develops into a first feeding larva
of weight w0 = 135 in 21 days and the survival is 0.43 (i.e. a loss in numbers of
57%). The specific growth rate at the onset of feeding is 0.07 per day and the in
stantaneous rate of mortality is 0.04 per day. Only 4.4% of these larvae reach the
beginning of the juvenile stage (weight 24472 = 18 1w0) during the next 145 days
and the mortality rate has dropped to 0.0 12 per day and the specific growth rate
to 0.02 per day. The total survival from the egg to the juvenile stage is 2% in the
course of 166 days. These stage specific growth and mortality rates are ali in good
agreement with the data (Houde, 1987) deduced from published size-at-age data.
The same parameter values seems to work equally well on Atlantic cod. 30.5% of
the cod eggs of weight Wg = 50 resuits ifl first feeding larvae of weight w0 24.5
after 19 days. These larvae begin to grow at a rate of 11% per day suffering a mor
tality rate of 6.7% per day. The 3.5% survivors reach the weight of 269w0 = 6600
after another 109 days and daily growth and mortality have dropped to respective
ly, 2.8% and 1.7%. The survival over the 128 days from spawning to metamor
phosis is 1%, i.e. one egg of 50 g dry weight has, on average, developed into 6600

0.01 or 66 g dry weight (32% increase in biomass).

10.2. Critical points and food criterion

The decimation of a year-class during the time-period required for the individual
fish to gain a factor of p in weight and for the year-class to consume a specific
amount of food, F, is being considered here. The rates of growth and mortality
are described by the allometric model, i.e.

g(w,H) = H(N0,q,p,F)wm ; q H(N0,q,p,F) Hmax

= qw

where H no longer is a constant but depends on the initial condition (N0 and w0),
the relative size at recruitment (p), the amount of food (Fn) and the specification
of the rates of food consumption and mortality (y, k, Hmax and q). However, the
weight at onset of feeding (w0), the coefficient of starving metabolism (k), the as
similation efficiency (‘y) and the maximum coefficient of growth (Hmax) can be re
garded as species-specific constants. Furthermore, specifying p as the size-ratio of
larvae to their prey (or, alternatively, defining p according to a physiological well
defined stage (size) such as the onset of metamorphosis), makes H a function of
the predation pressure (q), the food situation (Fn) and the initial number (N0).
Secondly, considering steady state conditions, in the sense that the environmental
conditions (i.e. q and F) remain the same from one year to the next, then H be
comes a function of the initial numbers only.
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The situation N0 = E defines the critical point C on the recruitment curve at
which growth takes place at the maximum rate, H(E) = Hmax (cf. Ex. 9.2). The
other extreme situation, occurring at a high initial number, N0 = EB, defines point
B of status quo in biomass obtained at (what we here consider to be) the minimum
rate of growth, H(EB) = q. Note that H is independent of the choice of the expo
nent, m, because the size-specific survivorship in the allometric model (see Section
10.1), 11, is independent of m. Hence, size-specific recruitment is expressed as,

= N0 p/H(No)
; q/H3 q/H(N0) i , p = w1/w0

In particulai we obtain the recruitment relationships for the two critical points,

NB = EB//i ; B: Point of zero biomass increase, H(EB) = q

N = E p-q1 ; C: Point of maximum rate of growth, H(E) = Hmax

Note, in passing, that the p-specific recruitment curve without the requirement for
a consistent amount of food consumption (i.e. H(N0) is constant) simply becomes
the straight line with slope 11. Returning to the present situation with the F-re
quirement, the first step in obtaining the recruitment curve, connecting the critical
points, is to insert the survivorship of the allometric model in Eq. (16) for F.
Hence, we obtain the following requirement for food balance,

f
Nw 1q/H(No)_° °

. ;H(N0)q
N0w0

çP GGE(H(N0)) 1—q/H(N0)
F =

( o))Ji Nw

GGE(H(N0))
lnp H(N0) q

from which the initial numbers for the critical points may be derived:

- F.GGE(q) - -

EB — , H(EB) — q (_ Hmin)
w0ln p

— F• GGE(Hmax) 1 — q/Hmx —

E —

_______________

. , H(E)
— Hmax

p1_q/Hm.
— i

or the ratio,

EB — GGE(q) pl-qIH,
— i i

E - GGE(Hmax) i — q/H in p
Inserting the gross growth efficiency underlying the allometric model,

GGE(H(N0))= yH(N0)/(k+ H(N0))

brings the ratios of initial numbers and recruitment for the critical points to the
form,

EB — q Hmax + k p1-q/H.
— i —

qJH-1

- q + k Hmax — q ln p ‘ N - E
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Note that this recruitment ratio is independent of the amount of food (Fn), the as
similation efficiency (y), the exponent m as well as the initial weight (w0).

Suppose q = 0.15 and k = 0.05 as in the example in Section 10.1. Ali units are
in (rig dry wt)°’25 d because m = 0.25. Putting Hmax = 0.40 gives a maximum
growth rate of 18% d for Atlantic cod and 12% for Atlantic herring at the onset
of feeding. After gaining a factor of p in weight, the specific growth rate is reduced
by a factor of p°25. At the beginning of the juvenile stage, the maximum specific
growth rate is only ca. 4% d’ for cod (p = 269) and ca. 3% d-’ for herring (p =
181). Food-specific recruitment to the juvenile cod stage is reduced by a factor of
0.23 (i.e. NB/Nc = 0.23) when the number of first feeding Iarvae increases by a fac
tor of 7.7 (i.e. EB/Ec = 7.7). In terms of biomass,

B1 = B0 pl-o/H(No),

point C represents an increase of a factor of 2690625 = 33 and point B the status
quo situation. For herring (p = 181) the critical recruitment ratio is slightly higher
(N0/N = 0. 25) but the critical ratio of initial number somewhat lower (EB/Ec =
6.4) compared to cod (p = 269). For a treatment of the predator-prey size ratio (cf.
Fig. 10.1), suppose p = 100. The criticai recruitment ratio is then 0.28 correspond
ing to a factor 4.9 increase in initial numbers. The critical recruitment ratio is, thus,
rather insensitive to changes in p but, EB/Ec, the relative domain of variation in
initiai numbers increases from about 5 in case ofp = 100 to almost 15 for p = 1000.

In order to obtain an expression for the recruitment curve we first irisert the re
lationship for GGE iri the F-equation and obtain

N
— yF, H(N0)—q 1

0
— w0 H(N0) + k pi—qIH(No)

— i

Inserting p-q/ = = l or H = —qln p/ln 11 gives the transcendental equation
for the food and size-specific recruitment curve,

N
- yF ln(p11)

0
— w (p11 — 1) ln(pl_lI)

The formula permit us to caiculate N0, the initiai number for a specific value of the
survivorship 11, and then obtain recruitment by N1 = 11N0.

Fig. 10.2 shows the curve for food-specific recruitment to gain a factor of 100
in weight when the situation in the exampie of Section 10.1 (e.g. H = 0.25 and q
= 0.15 (i’g dry wt)°25d1) is considered to be valid at an initial number of 10 first
feeding cod larvae. The maximum rate of growth is, again, put to O.4OW025 d1.
Recruitment is N1 = 6.3 1011 because the instantanenous rate ratio of mortality to
growth is q!H = 0.6 and the survivorship of the N0 = 1013 larvae becomes 10006

or 6.3%. Hence, the initial biomass of 24.5 1O’ pg dry wt or 245 tons dry wt in
creases by a factor of 6.3 to 1546 tons dry wt at recruitment after = 77 days.
The amount of food eaten is

245 100°—1F100 = (1 + 1/i)
0 4

= 5575 tons dry wt
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Fig. 10.2. The food-and-size-specific recruitment curve for F100 = 5575
tons dry wt and q0 = 0.15 (rg dry wt)°25 d-1 in the allometric model. The
assimilation efficiency is 70% and the specific rate of fasting metabolism
is 0.05w°25d. N0 denotes the number of first feeding larvae with body
weight 24.5 tg dry wt (such as for Atlantic cod). N1 denotes the number
of recruits of size 2.45 mg dry wt (p = 100). The maximum specific
growth rate is 0.4Our°25d or 2.67 times the rate of mortality. The max
imum survival at point C (reached after 48 days) is, therefore, 0.011/267
or 17.8% giving anse to a 17.8-fold increase in the biomass of the year
class. When the rate of growth is reduced by a factor of 2.67 the time re
quired to reach the size of recruitment increases by the same factor, i.e.
point B of 1% survival is reached after 128 days (during which the
biomass remains constant). The recruitment curves for 50% reduction
(q = 0.075) and 50% increase (q = 0.225) in the rate of mortality are also
shown.

This requirement for a consistent amount of food consumption has been used to
obtain the recruitment curve connecting points C and B in Fig. 10.2. Curves for
50% change in the rate of mortality (but with unchanged F100) are also shown. Point
B moves up along the 1% survival line when the coefficient of size-specific mortality
(q) increases. Point C of maximum growth follows a descending curve (i.e. recruit
ment N decreases but E increases with higher levels of mortality). Point C thus
approaches point B and they coincide when q = Hmax at an initial number of

— Y p max —

C B— , q— max
w0 (k + Hmax) ln p

or, at N0 = 3.07 1013 in the present case. The equivalent situation in the case of den
sity-dependent growth in the elaborated S&C model is shown in Fig. 9.1.

42% 18% 7.5%

1%

3
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10.3. Recruitment to meet a constant average rate of food consumption
The average rate of food consumption by the year-class, C, is obtained by dividing
the total amount of food eaten with the time required to gain a factor of p in
weight. That is

m 131-q/H(No)
—C = F /r1 =y-1N0w01(k+ H(N0)).‘‘ I’

— i i — q/H(N0)

For example, in the case of N0 = 10’ considered in Fig. 10.2, 5575 tons dry wt is
consumed in the course of 77 days which gives an average rate of food consump—
tion of 72.4 tons dry wt per day. The actual rate of food consumption increases
from Ca. 47 tons on the day of first feeding to Ca. 94 tons on day 77. This follows
from a computation of C(w), i.e.

C(w) I\[(w)i(w) = -y’N0(k + I_I(1\I0))w0/H(No) 1_nq/H(No)

which implies that the rate of food consumption is constant if H(N0) = q/(1 — m)
or 0.20 (i’g dry wt)°-25 d-1 in the present case of q = 0.15 (rug dry wt)°-25 d-1 and m
= 0.25. The rate of food consumption by the year-class bears a decreasing relation-
ship to weight if 0.15 H < 0.20 and an increasing relationship if 0.20 <H 0.40.
The general situation is as follows

i — m <q/H(N0) i or q H(N0)<q/(1 — m) C(w) decreases
q/IImax q/H(N0)< 1 — m or q/(1 — m) <H(N0) H C(w) increases

Replacing the F-requirement with the C-requirement, we obtain a new recruit
ment equation from the C-condition above,

N
— yC i—q/H(N0)

_________

— mw01—‘ k + H(N0) pl — q/H(N0)— 1

Recruitment is, then, caiculated by the procedure described in Section 10.2, i.e. in
serting 11 = p-q/E1 Alternatively, one may obtain N0 and 11 for a specific value of H
and then N1 = N0 11.

Fig. 10.3 shows theC100-specific recruitment curves under the same conditions
as theF100-specific curves in Fig. 10.2. Point C is the reference point, i.e. C100 =

5575/48.1 = 115.9 tons dry wt &1. The time required to reach the critical point of
maximum growth is 48.1 days irregardless of the rate of mortality. Point C, there
fore, follows exactly the same descending curve as in the case of F-recruitment
when the coefficient of size-specific mortality (q) increases. However, since T1 is in
versely proportional to H(N0), point B of status quo biomass will be raised by a fac
tor of Hnax /q compared to the F-recruitment situation. The equation for EB reads,

C #?fl_1 1 / H
EB =

‘ . .

— ( EB in F-case X —; Hmax = Hrcfmw01” k+q lnp \ q
At the low mortality leve!, q = 0.075, point B is, thus, raised by a factor of 5.33 in
Fig. 10.3 compared to Fig. 10.2. The raising factor is 2.67 in the case of q = 0.15
and only 1.78 for the high level of mortality considered (q = 0.225). This is why
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Fig. 10.3. Size-specific recruitment in the case of an average rate of
food consumption of C100 = 116 tons dry wt per day jo the allometric
model. The specification of the model is otherwise identical to the sit
uation in Fig. 10.2. Point C of maximum growth has been chosen as
the common reference for the two situations. That is the amount of
food eaten when point C is reached after 48 days equals the F100 =

5575 tons criterion used in Fig. 10.2. The recruitment curves for
±50% changes in the rate of mortality (but with unchanged C100-cri-
terion) are also shown.

the curves in Fig. 10.3 shows the opposite q-trend to the equivalent curves in Fig.
10.2. When q increases, point B moves down the 1%-survival line, recruitment at
point C decreases at about the same rate and the recruitment window narrows
down (because, imax = p-q/H=, the slope of the initial C-recruitment line decreases).
Points C and B coincide (see E EB formula in Section 10.2) when q = Hmax at N0
= 3.07 1013 in the present case.

The ratio of initial flumbers, E5/E , and hence, the ratio of recruitment,
NB/Nc, are consequently also raised by a factor of Hax/q compared to the F
case in Section 10.2. This raising (by a factor of 2.67 in case ofq 0.15) creates a
higher degree of recruitment stability against variations in iflitial numbers in the
present C-case compared to F-recruitment. The E-ratio or the relative span in
critical initial numbers increases from 4.9 in Fig. 10.2 (q0-curve) to more than 13
in Fig. 10.3 and the recruitment ratio is raised from 0.28 to 0.74. The deviation in
recruitment measured at the critical points is actually less than a factor of 2 when
q varies between zero and Hmax although the E-ratio represents a large domain of
variatiofls ifl initial numbers (increasing from 13 for q = 0.15 to 2p = 200 for q =
0). However, at low levels of mortality, the recruitment curve has a pronounced
maximum (see top curve for q = 0.075 in Fig. 10.3) and the ratio of critical recruit
ment does flot reflect the true variability ifl recruitment.
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5 10

Initial Number at size w0 (N0 x i 0)
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10.4. Discussion and conciusions
One aim of this example was to consider a simple extension to the models present
ed in Ex. 7 in order to obtain a sensible description of larval growth and mortality.
In this respect, the allornetric model is attractive since it is specified by only three
constants (q, H and m) and cannot be rejected immediately based on our limited
knowiedge on growth and mortality of larval fish (e.g. Houde, 1987). With m
0.25, the model has the desired properties. The specific growth rate is, rhen, in
versely proportional to the body weight to the power of 0.25. The rapid reduction
in the specific growth rate in case of the B&H exponent of 1/3 is considerably mod
erated with this weight exponent of 1/4 (Ca. 50% for p = 100). A value of 0.25 is
also in agreement with general knowiedge on the weight exponent of specific
metabolism (Hemmingsen, 1960, Fenchel, 1974). Furthermore, empirical evidence
seems to support a value of 0.25 for the weight exponent of the general trend in
decreasing mortality rate with increasing body size throughout the pelagic ecosys
tern (Peterson & Wroblewski, 1984). Based on data ori larval haddock, plaice and
mackerel as well as theoretical reasoning, Ware (1975) also concluded that the
mortality rate is inversely proportional to particle size whether it is an egg or a
larva. The consideration in Fig. 10.1 of mass balance in the predation-food-con
sumption process gives a direct answer as to why we may expect proportionality
between the mortality rate and the specific rate of food consumption. Peterson &
Wroblewski (1984) reach a sirnilar conciusion but their approach is based on more
complicated psd theory (Silvert & Platt, 1980) and the important points become
less transparent.

Based on these brief comments, it can be conciuded that the allometric model
is good enough to go on with as a general but simple stage-specific description of
the vital rates during larval and juvenile life. The model can be applied to consec
utive stages of the development of the year-class. For example, if the total size
range from the egg stages to the size of first maturity is divided into r stages each
of which is governed by a cofistant set of (q, H) values, the total survivorship is
obtained by the multiplicative rule,

i =
P2
q2,H2 . . p—ciJH

where H, may depend on N1_1, the initial number of fish entering the jth stage. It
is important that biological significance can be attached to the ps, the weight gain
ing factors. In the present example, we have oniy considered one stage and two al
ternative definitions of p are of particular interest for early life studies. The first
relates to physiological reasonably well-defined sizes of beginning and ending the
stage such as the considerations of the survival from the onset of feeding through
metamorphosis. Based on Atlantic cod and herring (Houde, 1987), the value of p
in this definition seems to be in the order of 200. The second relates to the size
ratio between larvae and their prey. We have, here, reason to believe that p takes
values in the order of 100. For example, a cod prefers prey of about 1/100 of its
own weight (Ursin, 1973). A p = 100 fits well with the fact that a (24.5 g dry wt)
cod larva at the onset of feeding is able to eat Calanus eggs and small copepod nau
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plii of about 0.2 ig dry wt. When the cod larva has increased in weight by a factor
of 100 and reached a size (2.45 mg dry wt) of about one-third of the weight at
metamorphosis, then it is able to consume the adult stages of the small copepods
(which typically show a factor of 100 in weight from egg to adult). Tt is actually
also able to eat first feeding larvae. Thus, the 2.45 mg dry wt larva is much less de
pendent on the production of eggs and nauplii since it is also able to utilize the
standing crop of various copepods (Jones, 1973). Tt is for this reason that it is of
particular interest for recruitment studies to describe the death process as a size
and density-dependent function of the available food supply and predation rate
(see also Ware, 1975).

The concept of an allometric growth model was probably first considered in
depth by Parker & Larkin (1959). Apart from more recent applications ofpsd-the
ory, very few investigations of the combined allometric model for growth and mor
tality seem to be available. However, Ware (1975) introduced a model similar to
the allometric basis presented in this example. In his important considerations of
egg size, Ware used an instantaneous rate ratio of mortality to growth of Ca. 0.7
which is close to our example of q/H 0.15/0.25 = 0.6. Ware’s work in combi-
nation with Beverton & Holt’s (1957) considerations of the Ricker & Foerster
(1948) suggestion (see Ex. 7) actually creates an important basis for the extensions
considered here in terms of incorporating a simple treatment of food supply and
consumption rates.

The major difference between the present treatment and Ex. 7 lies in the expres
sion for the growth coefficient, H(N0), as a function of the initial number, N0. The
beginning point in Ex. 7 is the direct (empirical or qualified guess based) formula
tion of the function H(N0) from which we, then, derived the size-specific recruit
ment curve taking mortality into account as a separate process. The beginning
point in the present example is the formulation of a food supply criterion from
which the dependency of H on N0 and on the specification of mortality etc. is de
rived. The resulting curve, therefore, represents size-specific as well as food-specif
ic recruitment according to the particular criterion that has been applied. Tt is im
portant to note that there is no need to replace H(N0) with, say, the equivalent
start-density dependent version of the S&C model, Gmax/(1 +N0/A(N0)). The re
cruitment curve will be the same because the food criterion alone determines the
growth coefficient as a function of N0.

Figs 10.2 and 10.3 illustrate that the shape of the recruitment curve indeed de
pends on the selection of the food criterion. Note that the C-line dynamics are de
termined by the density-independent rules (because H(N0) = Hmax). The equations
for point C are, therefore, the same in the two cases considered and also identical
to the C-equations in Ex. 9.2 for the S&C model. Hence, the position of the C-line
is very sensitive to changes in the mortality rate as discussed in Ex. 9.4.

As expected from the discussion in Ex. 9, the F-criterion in Fig. 10.2 does not
stabilize recruitment against variations in N0 to the same degree as with density
dependent growth (see Fig. 9.2). However in the second case, considering F, the
amount of food eaten as a variable that is proportional to the time required to gain
a factor of p in weight (where C denotes the constant of proportionality), we ob
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tam a higher degree of stability (Fig. 10.3). This is to be expected because more
food, F = CT1, is available when growth is slow.

The food-criteria stabilizes recruitment at medium to high initial numbers
against fluctuations in the mortality rate. For example, the survivorship at N0 =
1013 with theF100-criterion in Fig. 10.2 is l = 0.063 or 6.3%. Changing the mor
tality rate with ±50% causes the survival and, hence, recruitment to vary by a fac
tor of 1i’ 16 if mortality had no effect on growth (i.e. the multiplicative rule is
valid with no food criterion). In Fig. 10.2, recruitment varies with a factor of only
ca. 1.5! The mortality-to-growth effect of the F-criterion is actually so strong that
it creates the opposite trend than common believed. Recruitment increases when
the rate of mortality increases! At the high leve1 of mortality, the growth coeffi
cient, H(1013) = 0.39, almost attains the maximum value OfHmax = 0.40 whereas
at the low mortality level, q = 0.075, the growth coefficient, H(1013)= 0.11, almost
reaches the minimum value of q. This reversed q-recruitment-trend is, in other
words, achieved by an unrealistically high variation in the rate of growth (a factor
of ca. 3.5). With the C-criterion, we obtain the expected trend (Fig. 10.3).
Recruitment increases when the mortality rate decreases and vice versa. The
growth rate varies by a factor of 2 when the mortality rate is changed by ±50%
and recruitment varies by a factor of ca. 3.

Tt is flot possible to obtain recruitment as an explicit function of initial numbers.
One can, however, obtain a reasonable fit to the F-recruitment curves in Fig. 10.2
by a power function,

H(N0) =
, N

I. Hnax (N0/E)-6 N E

For theq0-case in Fig. 10.2, 6 0.6 but the exponent decreases with increasing p
and/or increasing mortality rate (q). We conclude that the recruitment curve
shows a resembiance to the 6-power-Ricker curve (Ex. 7.5). Tt also gives us an idea
about the shape of the age-specific recruitment curve,

R = N0[p(I_I(N0))]_hI”0)

where p(H(N0)) is the weight gaining factor after time ry.. That is, using the 3-

equatiofl in Section 10.1,

= W(tr)/W0= [1 + m I-I(I\[0)w0”r = tr — t0

Inserting the approximative relationship for H(N0), brings age-specific recruitment
on the form,

/ XT \-x qR = N0 [1 + C0/x] ; x = ; CO = /Lj = qw0’”; N0 E
mHmax E

This represents the max-min type of recruitment curve considered in Ex. 7 (see Fig.
7.4). The saddle-point situation occurs for 6 C0 = 4.625 or, at recruitment after 114
days for 6 = 0.6 and p = 0.067 d’ (q0-case in Fig. 10.2). The initial part of the
age-specific recruitment curve, the C-line, is obtained with 6 = 0 in the R-equation
above. This age-specific situation is somewhat artificial because we first obrain a
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function, H(N0), from the F-criterion (which in Fig. 10.2 implies that the time re
quired to grow to size-specific recruitment increases from 48 days at point C to
128 days at point B). Second, using this H(N0), we derive recruitment to a specific
age. However, the procedure provides the linkto the considerations of start-density
dependent growth in Ex. 7 and illustrates that age-specific recruitment takes a
completely different form than size-specific recruitment.

We shall, briefly, consider a third food criterion. Assume that a constant amount
of food, F, is eaten during a specific period of time (Tr). That is

F = y1B0
H(N0) + k ((N0))]1m(No)

— i}
H(N0)—q

where p,(H(N0)) is given by the above expression. The critical points are also de
scribed by the expressions for the Fn-situation in Section 10.2 but p is replaced with
Prr(H(N0)) Hence, the ratios of initial numbers and recruitment for the critical
points are

—

Hmax+ k
[p()]l/H

— i

E - q + k Hmax q lnp(q)

RB EB [Pr(Hmax)]
q/H

R - E Pr()
Using p(0.25) = 100 as the reference toF100-size-specific recruitment in Fig. 10.2,
we obtain Tr = 77 days for cod (w0 = 24.5 pg dry wt). The entire dynamics of F77-
age-specific recruitment relative to Fig. 10.2 may be understood from the p values
alone. We consider recruitment after 77days (but omit the Tr = 77 (days) p-index
for short notation). The p-value at point C for age-specific recruitment, p(0.40) =
396, decreases towards the p-value at point B, p(0.15) = 28, as the initial number
increases from E to EB = 17 E. Recruitment, hereby, increases by a factor of 5.6.
This follows directly from the above formulas. What actually happens compared
to the situation in Fig. 10.2 is that the recruitment window narrows down. The
slope of the C-line decreases from 18% to p(0.40)-°15/°4°or 11% and the slope of
the B-line increases from 1% to 1/p(0.15) or 3.6%. Point C also moves down and
point B up its line which results in the opposite recruitment course compared to
Fig. 10.2. If we, instead, consider herring (w0 = 135 pg dry wt), then the reference
point of p = 100 for H = 0.25 is obtained after ir = 118 days. This means that re
cruitment after 118 days for herring also increases by a factor of 5.6 as the initial
number increases by a factor of 17 (because the weight gaining factors, the p(H)s,
and, hence, the critical ratios are independent of the initial weight (i.e., TrWO is
constant in the two cases)).


