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Abstract
A method to estimate the effective mesh sizes used by different fleets fishing on the same stock is de
scribed. The model of the fisheries makes use of the von Bertalanffy and the traditional Beverton &
Holt equations to describe the dynamics of the stock. Logistic curves are used to describe the recruit
ment of the fish to grounds, the selective properties of the gears and the discard practice. The effective
mesh sizes are estimated by minimizing the sum of squares between the estimated and observed relative
length or age composition of the landings. The model can be used to estimate the effects on the
different fleet’s fishing mortalities and catches of changes in the mesh sizes and effort in one or more
fleets etc.
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1. Introduction
An important part of the work of the fisheries research has been to estimate the
short-term effects on catches and stock caused by changes of the selectivity of the
gears being used, in particular of changes in the mesh size of trawls. Models for
such assessments have been studied by several authors (Gulland 1961, 1964; Jones
1961, 1974 and K.P. Andersen, pers. comm.).
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Besides assumptions inherent in the models these methods assume that the pres
ent mesh size is known. However, as Gulland (1961) points out it is often a
practical problem to determine precisely the average effective mesh size in use. He
mentions two factors that may contribute to make the effective mesh size of a trawl
different from the minimum legal size:

1. Shrinkage of new nets and subsequent stretching.
2. Chafing gear.

We will add some other factors to the list:

3. Lining inside the codend by small mesh netting.
4. Clogging of the net by fishes, especially when large catches are taken. This

might be a significant factor even for small (by-)catches of fishes like redfish
or flatfish.

5. The selective properties might change as the towing speed is changed. Higher
speed may make the meshes more elongated and cause a lower selection
factor.

6. The (direct measurable) mesh size in the codend may be different from the
minimum legal one.

To elaborate the second factor somewhat: A covernet if allowed might be of too
small mesh size. For example, a covernet of the same mesh size as used in the
codend (a double codend) is found to reduce the effective mesh size by about 20-
30 % (Stersdal 1960). Tight ropes around the codend might reduce the effective
mesh size (Beltestad 1977).

To make the sixth factor more clear; the codend may have been made of a
slightly larger mesh size than the minimum legal size in order to make sure to be on
the ‘legal’ side. Alternatively a codend with too small mesh sizes may be used il
legally.

The present paper describes a method that on the basis of the length composi
tion, or age composition of the catches from fleets that exploit the same stock,
gives an estimate of the effective mesh sizes in use by the fleets.

The basic idea (K. P. Andersen, pers. comm.) is to estimate for a given set of
mesh sizes, the expected length distributions, and then to compare the estimated
with the respective observed distributions. An optimization routine changes the
calculated (effective) mesh size in order to minimize the sum of the squared dis
tances between the estimated and the observed relative length- (or age) distribu
tions.

‘When this sum of squares is at some defined minimum, the optimization is ter
minated. Within the realism of the model and the quality of the fixed input para
meters, we then have estimates of the effective mesh sizes used for the period from
which the observed length- (or age) distributions are taken.

In addition to the catch-composition data, information about how the availabil
ity of the fish to the different fleets changes as the fish grow is needed. Information
on discard practice of small fish is essential, as this practice, if used, makes the
composition of the landed fish different from the actual catch composition.
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The method further requires information about the total fishing mortality and how
it is distributed on the different fleets. The model uses the von Bertalanffy growth
equation, to correct the length with age.

For fleets that do not use trawl the gears are regarded as if they were trawls.
The result from this model may be of interest itself, not only because it gives

estimates of the effective mesh sizes, but also because one might do some extent
test the consistency of the basic input data versus independent information.

In the present paper the assessment of mesh size is done within the scope of a
single species assessment method, but it may also be carried out in more com
plicated models. In Sparre (1980), a detailed description of mesh assessment in the
commonly used time discrete model was given. This work also describes how mesh
assessment can be incorporated into a species interaction and technical interaction
model.

This model for mesh assessment is called STEP 1 in the present paper. The
results from STEP 1 may be used in another model, STEP 2, which gives assess
ments of the effect on catches after a change in mesh sizes. These effects are
estimated on yearly basis until the new stability is achieved.

STEP 2 requires that the results are given in terms of catch and discards per age-
group rather than per length group. Assessments done on the basis of length-
distributions may easily be recalculated in terms of age groups for the same esti
mated effective mesh sizes.

2. Estimation of gear parameters (STEP 1)
To aid memory, a list of all symbols used is given in Section 6.

2.1 Fishing mortality at length and age
In the present context the population to be considered is a yearclass during its
lifespan.

Let

N( TI) = the initial number of fish of the youngest age (TI years) considered.
N(T) = the number of survivors at age T.

As Beverton & Holt (1957) we shall assume a constant recruitment, and constant
mortality on each age- or length group, from year to year.

A corrollary of this assumption is that the characteristics of a yearclass during its
lifespan equal the characteristics of all age groups of one particular year.

Consider one stock exploited by E fishing fleets. Within each fishing fleet all
vessels are assumed to use the same type of gear.

A fleet is characterized by:

1. Selection curve: SL(e,L)
2. Recruitment curve: RL(e,L)
3. Discard curve: DL(e,L)
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SL(e,L) is the fraction retained of the fish of length L entering the gear of fishing
fleet no. e (e = 1,2 , E).

SL is composed of an ascending and a descending part. For example the
larger fish might not so easily get entangled in a gill net as the medium
sized ones.

All fish that enter the gear, without being retained, are assumed to
survive.

RL(e,L) is the recruitment of fish of length L.
The recruitment is composed of an ascending and a descending part

(derecruitment) describing the migration of the fish into and out of the
area exploited by fleet e.

DL(e,L) the fraction of the number caught of length L which is not discarded.
None of the discarded fish are assumed to survive.

Fishing mortality exerted by fishing fleet e on the fish of length L, FL(e, L) is the
sum of the mortalities:

FL(e,L) = FLLAND(e,L) + FLDISC(e,L)

where FLDISC is the mortality caused by discarding and FLLAND is the remain
ing fishing mortality, the ‘landing mortality’.

Fishing mortality is assumed to be the product of three factors:
FL(e,L) = SL(e,L) RL(e,L) EF(e) (1)

where EF(e) is the maximum fishing mortality on length groups exerted by fleet e.
Discard and landing mortalities are:

FLLAND(e,L) = DL(e,L) FL(e,L)
‘2FLDISC(e,L) (1 — DL(e,L)) FL(e,L)

Total fishing mortality is the sum of the mortalities caused by the individual fleets.

FL(L) =IFL(e,L) = FLLAND(L) + FLDISC(L)

FLLAND(L)
e’

FLDISC(L)
e’

The relationship between age T and length L is described by the usual von
Bertalanffy equation:

L(T) = L8(1 — exp(—K(T — TO))) or
T(L) = TO — log(1 — L/L8)/K

SL, RL, DL and FL can be considered as functions of age by:
S(e,T) = SL(e,L(T))
R(e,T) = RL(e,L(T))
D(e,T) = DL(e,L(T))
F(e,T) = FL(e,L(T))

FLAND(e,T) = FLLAND(e,L(T))
FDISC(e,T) = FLDISC(e,L(T))

F(T) =F(e,T) = FLAND(T) + FDISC(T)
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2.2. Population dynamics
The dynamics of the yearclass and the catches are described by the usual equations
as given by Beverton & Holt (1957).

The number of survivors of the yearclass is determined from:
dN(T)

= —(F(T) + M(T))N(T)

where M(T) is the natural mortality at age T.
The number caught is given by:

dC(T)
= F(T) N(T)

dT
where C(T) is the total number caught in the time period from TI to T.

The number caught by fleet e is given by:
dC(e,T)

= F(e,T) N(T)

where C(e,T) is the number caught by fishing fleet e in the time period from TI to T:.
T

C(e,T) = F(e,t) . N(t)dt
TI

The number landed by fleet e is:

LAND(e,T) D(e,t) F(e,t) N(t)dt
TI

and the number discarded is:

DISC(e,T) =J (1 — D(e,t)) F(e,t) N(t)dt

Total number caught, landed and discarded by all fleets are C(e,T), LAND(e,T)
and DISC (e, T) respectively.

The number caught in time period from Ti to T2 is:
72

C(T2) — C(T1) =J F(t) N(t)dt
TI

The number caught of lengths between Li and L2 is:
T(L2)

C(T(L2)) — C(T(L1)) = F(t) N(t)dt
T(L1)

The number caught by fleet e of lengths between Li and L2 is:
T(L2)

C(e,T(L2)) — C(e,T(L1)) = F(e,t) N(t)dt
T(L1)
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2.3. Number caught per length group

Let the catch be divided into length groups by
LG(1), LG(2) , LG(I).

A fish belongs to length-group i, if
LG(i) length of the fish < LG(i + 1)

Let

TG(i) = T(LG(i))

Then the number caught in length group i becomes:
C(TG(i + 1)) — C(TG(i))

and the number caught in length group i by fishing fleet e is:
C(e,TG(i + 1)) — C(e,TG(i))

The number landed from length group i by fishing fleet e is:
CL(e,i) = LAND(e,TG(i + 1)) — LAND(e,TG(i)) (3)

and the number discarded is:
CD(e,i) = DISC(e,TG(i + 1)) — DISC(e,TG(i)) (4)

The total catch per length group is designated:
CT(e,i) = CL(e,i) + CD(e,i)

CT and CL are the basic observations of this analysis.
The number caught per age group is calculated by defining the limits of the

length groups so that each length group corresponds to one whole agegroup.
The isometric relationship between length and weight is given by:

w(T) = Q L(T)3

where Q is the condition factor. The yield per length group (or age group) can be
calculated by inserting this relationship under the integrals above, for example

T

CW(e,T)
=fTI

L(t)3F(e,t)N(t)dt (5)

where CW(e,T) is the catch in weight by fleet e in the time period from TI to T.

2.4. Parameters of the selection curves

The gear-selection curve SL(e,L) is defined by:

SL(e,L)
= 1 + GSEL(e,L) 1 + DGSEL(e,L) (6)

where:
(L — L5O%(e))Iog3

GSEL(e,L) = exp
L75%(e) — L5O%(e)

(7)

and
IT TT CflO/ I \‘1

— LJLJu/oe))tog
DGSEL(e,L) — exp

— DL7S%(e) — DLSO%(e)
(8)
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Thus, the gear-selection curve is a product of two logistic curves. The logistic
equation rather than the normal model has also been used by Kimura (1977).

L50% (e) and L75 % (e) are the lengths at which 50% and 75% resp. of the fish
entering the gear of fleet e are retained by the gear (see Fig. 1).

L50% and L75% describe the left hand side of the gear-selection curve (the
ascending part). DL5O% and DL7S% are the equivalent parameters for the right
hand side of the curve (the descending part), as illustrated in Fig. 1.

SL(e,L)

Fig. 1. Gear selection curve. I

The expression of the recruitment curve is mathematically equivalent to that of
the gear-selection curve:

RIJL—
1 1

e,
— 1 + RSEL(e,L) 1 + DRSEL(e,L)

where
(L — RLSO%(e))log3

RSEL(e,L) = exp
— RL75%(e) — RL5O%(e)

(L — DRLSO%(e))log3
DRSEL(e,L) = exp

— DRL7S%(e) — DRL5O%(e)

The discard curve, DL(e,L) (= the fraction not discarded) does not have a
descending part as only small fish are assumed to be discarded. For the ascending
part of the curve the expression is equivalent to those of gear selection and re
cruitment:

1
DL(e,L)

— 1 + DISEL(e,L)
where

(L — DILSO%(e))log3
DISEL(e,L) — exp

— DIL7S%(e) — DILSO%(e)

Thus, landing and discard mortalities (Eqs. (1) and (2)) are determined by the set
of parameters (one set for each fishery):

total fishing mortality on age- or length-groups
subject to maximum exploitation.

ascending gear-selection curve.
descending gear-selection curve.
ascending recruitment curve.
descending recruitment curve.
discard curve.

EF:

L50%, L75%:
DLSO%, DL75%:
RLSO%, RL7S%:
DRLSO%, DRL7S%:
DILSO%, DIL7S%:
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The parameter to be estimated is MESH(e), the effective mesh size of fishing
fleet e.

MESH(e) is determined by L5O% and the selection factor SEL(e)

L5O%(e) = MESH(e) . SEL(e) (9)
In the present analysis all parameters, except for MESH(e) (and consequently

L5O% (e)) are assumed to be known from independent investigations. Instead of
assuming L75%(e) to be known, the ratio

FAC(e)
= L75/o(e)

(1(J)

is assumed to be known, so that the estimation of L75 % follows immediately
from the estimate of MESH (or L50%).

That FAC(e) is taken to be constant implies that the slope of the selection curve
decreases as the mesh size increases. At least for haddock there are experimental
evidence that this is the case (Jones 1963, Fig. 4).

For some fisheries derecruitment does not occur, or fishes are not discarded
whatever the size of the fishes. In the case of no derecruitment this is simulated in
the program by setting the lengths defining the derecruitment DRLSO% and
DRL7S% to some suitable values well above the length range simulated. If fishes
are not discarded at all, this is simulated by setting DILSO% and D1L75% to some
suitable values well below the length range simulated.

2.5. Observed and theoretical length distribution of the catches

Eqs. (3) and (4) define the theoretical length distributions of catches as predicted
by the model.

Let us rewrite the expressions by inserting the symbols for selection curves.
pTG(i+1)

CL(e,i) =J FLLAND(e,L(t)) . N(t)dt =

r TG( + 1)
TG(z)

j DL(e,L(t)) . SL(e,L(t)) . RL(e,L(t)) . EF(e) . N(t)dt (11)
TG(i)

and
pTG(i +1)

CD(e,i) =J FLDISC(e,L(t)) . N(t)dt =

rTG(i+1) TG(i)

j (1 — DL(e,L(t))) . SL(e,L(t)) . RL(e,L(t)) . EF(e) N(t)dt
TG(i)

The estimates of numbers landed by length are based on samples from com
mercial landings. The standard is that the observed length distribution of landings
is taken as the average of a numberof years in which the gears are assumed to have
remained unchanged.

The observations are designated:

OBSCL(e,i) = observed number of fish landed in length group i by fishing
fleet e.
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The estimation problem is to find values of MESH(e), e 1,2,.. ., E so that
El

(CL(e,i) — OBSCL(e,i))2 (12)
e=1 i1

is minimized.
To spell out the relations between the various parameters and variables the

expression (12) may be rewritten by using the expression for CL defined by Eq.
(11). The term SL, the gear-selection curve, was defined by Eqs. (6), (7) and (8)
and these expressions are inserted into Eq. (11). The last thing to do for con
verting Eq. (12) into Eq. (13) is to insert Eqs. (9) and (10) into the expression
for SL.

E i TG(i+1)
1

e-1
DL(e,L(t)) RL(e,L(t)) EF(e)

1 + DGSEL(e,L(t))
(13)

1
N(t)dt— OBSCL(e,i)

2

1 + ex (L(t) — MESH(e) SEL(e))log(3)
\ (FAC(e) — 1)MESH(e) SEL(e)

Thus, the problem is to determine MESH(e) so that the sum (13) is minimized,
when all other terms of (13) are known parameters or observations.

The values of MESH(e), e = 1, 2, . . ., E which minimizes the sum of squares of
deviations (13) are the effective mesh sizes.

With some appropriate changes in integration limits in (13) and by substituting
the observed length distribution with an observed age distribution, age distributions
can be used in the same way. The summation in (13) is then done over age groups
rather than length groups.

2.6. Estiftiation procedure

To determine the value of the sums of squares (13) requires the solution of a
set of simultaneous differential equations. The differential equations are those
which describe the dynamics of the population and landings.

dN(t) =
— (M(t) + F(t))N(t)

dLAND(1,t)
= D(1,t)F(1,T)N(t)

dLAND(2,t) D(2t)F(2t)N(t) (14)

dLAND(E,t)
= D(E,t)F(E,t)N(t)

dt
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To determine a unique solution of Eqs. (14) initial values of the variables N and
LAND are required.

The initial value of LAND is obviously zero.

LAND (e,TI) = 0 for all e.

The initial value of N is arbitrarily assigned the value 1000 (N(TI) = 1000) which
means that all calculations are made on a relative basis.

To make the observations comparable to the theoretical catches, OBSCL should
be expressed in relative terms. This could be done as follows:

The observed relative length distribution of catches is defined
OBSCL(e,i)

II OBSCL(e,i)
= ROBSCL(e,z)

The estimated (theoretical) distribution is defined
CL(e,i)

RCL(e,i)I CL(e,z)

The sum of squares to be minimized (12) becomes

I [RCL(e,i) — ROBSCL(e,i)]2 (15)

This object function considers the observations relative to the total catch.
Another possibility is to consider the catches of each fleet relative to the catch of

the fleet, i.e. to define relative observations as
OBSCL(e,i)

= ROBSCL(e,i) (16)
OBSCL(e,i)

and relative estimates as
CL(e,i)

= RCL(e,z) (17)
ICL(e,i)

The latter approach considers each fleet as being of equal importance, whereas
the first approach considers those fleets with the largest catch as the most im
portant ones.

The differential equations can be solved by some numerical method (e.g. Runge
Kutta, see e.g. Ralston, 1956).

In the Appendix a numerical example of Eqs. (14) is discussed. To minimize the
sum of squares of deviations (15) some numerical optimization method must be
applied.

Several optimization methods were tested (cf. App.). However, from a biological
point of view these technical details are of a limited interest, and only a brief
description of the procedure is given here. The optimization algorithm works as an
iterative process. That is, the algorithm should be provided with an initial guess on
the unknown variables (the MESHs), and based on that the algorithm calculates an
improved estimate. This process continues until the estimates in the current and in
the foregoing iteration are approximately equal.
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3. Assessing the effect of changing gear parameters (STEP 2)
The time continuous single species model has been used in some assessments of
mesh changes (Anon. 1974, 1977, 1979 and 1980) and a formal description of the
method is given in this section.

The time table of a mesh change is illustrated by Fig. 2.
In this approach, it is assumed that the population is in a steady state situation

before time Ti. After the change of mesh sizes the parameters of the system are
assumed to remain constant, which implies that the system ends up in a new steady
state after a certain transient period.

change of gears

old gears new gears

T1 T4 T2 T3
fl

time

old steady state transient period new steady state
(short time after change

Fig. 2. Time table of mesh change assessment. of mesh sizes)

The model could be applied as a strategic model, i.e. to assess the long term
effect of a mesh change. A drawback of the model, which it shares with the usual
yield per recruit models, is that density dependent growth and recruitment is not
accounted for.

The output of the model contains a description of the transient period between
the old steady state and the new steady state (see Fig. 2), but these results should be
treated with reservation, as the assumptions of an initial stable situation and a
constant recruitment may not be fulfilled. However, the simulated age composi
tions of the stock and the catches give estimates of the fishing mortalities for each
fleet. The changes in these fishing mortalities may be used to calculate the actual
short term changes in the catches, when the mesh sizes are changed in a nonequi
librium situation of the stock.

In the following it should be assumed that we are in a constant parameter
system.

Let OMESH(e) designate the set of old parameters and mesh sizes and NMESH(e)
the new set of parameters and mesh sizes. Let the change of mesh sizes occur at the
end of year Ti. Let T2 designate the time at which the transient period is over (see
Fig. 2). In the present context we consider all year classes during one year, and not
as in the foregoing sections, a year class during its life span.

To describe such a system the notation must be modified. Let N(y,t) designate
the number of survivors in year y at age t from a year class. Thus at the beginning
of year Ti the stock is composed of the following year-classes.

N(T1,0), N(Ti,i), N(T1,2)

(Due to notational convenience, fish are assumed to be ‘born’ on January 1, in
the following derivations.)
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At time u in year Ti (0 u 1) the stock is composed of

N(Ti,u), N(T1,i + u), N(T1,2 + u)

Let T3 be some year after the end of the transient period.
The number landed in age groups a before change of mesh size (e.g. in year Ti)

by fleet e is:

LANDY(e,T1,a) =f OFLAND(e,a + u)N(T1,a + u)du

where OFLAND is the landing mortality defined by the old gear-selection curve
(and discard and recruitment curve).

i.e.

OFLAND(e,a + u) = D(e,a + u)R(e,a + u)EF(e)

/ L(a + u) — OMESH(e)SEL(e))log3 ‘(i+exp —

_____________________

(FAC(e) — i)OMESH(e)SEL(e)

After the transient period the landings in, say, year T3 become

LANDY(e, T3 ,a) =f NFLAND (e,a + u )N( T3 ,a + u )du

where NFLAND is defined by the new gear-selection curve.
The landings are determined by solving the system of differential equations

(Eqs. (14)) for both the new and the old parameters.
Discards are given by:

DISCY(e,T1,a) =f OFDISC(e,a + u)N(Ti,a + u)du

and

DISCY(e,T3,a) _—f NFDISC(e,a + u)N(T3,a + u)du

and as the landings they are found by solving a system of differential equations:
dDISC(e t)

dt
= (1 — D(e,t)) F(e,t) N(t,a)

e = 1,2 ,E

By the above described procedure the landings and discards before and after the
transient period are determined.

The yield of fleet e before and after the transient period is calculated by using
Eq. (5) or by the approximation:

LANDY(e,Ti,a)W(a) = YIELD(e,T1)
and

LANDY(e,T3,a)W(a) = YIELD(e,T3)

where W(a) is the average body weight of an a year old fish.
Discards are found by similar expressions.
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The yields in the transient period may be assessed in the following way:
Let T4 be some year in the transient period (Ti < T4 < T2).
Let A4 = T4 — Ti. The yield in year T4 by fleet e is then

YIELD(e,T4) =
A4—1 N(T1 a)

LANDY(e,T3,a)W(a) + ‘ LANDY(e,T3,a)W(a)
a=O a=A4 N(T3,a)

4. Choosing the input parameters
Observed length- (or age) distributions: These observed values should be averaged
for several years, so that the assumption of constant recruitment applies reasonably
well. The number of years should be at least the same as the number of recruited
age groups.

The von Bertalanffy parameters: These include the assymptotic length as the age
increases (L8), the growth rate (K) and the age at zero length (TO).

Keeping all the other parameters constant, the higher the K (or L8) the lower
becomes the effective mesh size when estimated from the length distributions. This
is intuitively reasonable. The shorter time a year class spends in a length group, in
particular the smallest length groups, the lower must the effective mesh size be, in
order to ‘explain’ the observed frequency of the smaller fishes in the catch. The
effective mesh sizes are independent of the value of TO when using the length
distributions.

Simulations on the basis of the age distributions show rather contrary effects.
The estimates of the effective mesh size increase as L8 or K increase. This is
reasonable as the average length of any age-group then increases. Thus higher
effective mesh sizes are required, otherwise the youngest age groups will be over-
represented in the simulated age distributions. If TO increases the average length of
any age. group decreases, and by similar reasoning — a lower effective mesh size is
required when using the observed age distributions.

Selection factor (SEL(e)) and steepness of selection curve (FAC(e))
These parameters are determined in mesh selection experiments.

Recruitment function
A fleet might not cover the whole area of distribution for any size of the fish from
the stock concerned. Therefore a proper interpretation of the recruitment function
that varies between 0 and 1.0 is not the proportion of all the fishes of length L that
are available to the fleet concerned, but rather the availability at length L com
pared with the maximum availability to the fleet of fishes of any length.

The parameters needed in the recruitment function are not as easily determined
from experiments as the selection factor and the L75 %/LSO % ratio. However,
general knowledge about the distribution of the stock and its migration may help.
The general fit between the observed and the estimated length- (or age) distribu
tions may also give clues to whether the input parameter values are reasonable.
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For example, if the estimated frequencies drop much faster than the observed
frequencies as the length (or age) increases above that value giving the peak of the
frequencies, it may mean that the de-recruitment function applied is too steep, or
biased towards the lower length groups. However, the discrepancies may also be
caused by a too high total mortality assumed, which leaves fewer fish to survive to
the higher length- (or age) groups.

The recruitment function used affects the estimation of the effective mesh sizes
in the following way: The more the ascending part is shifted to the right that is
towards higher values of RLSO% and RL7S%, the lower becomes the estimated
effective mesh size. The less the smaller fish are assumed to be available, the higher
selectivity of the gear for smaller fish is needed in order to explain the observed
occurrence of these sizes in the catch.

Discard parameters: Discarding of small fishes at sea cuts off the lower tail of the
length- (and age) distributions, and it is essential to have reliable observations
about this practice. In the model only discarding of small fish is assumed.

The discard parameters affect the outcome of the simulation in the same general
way as the recruitment parameters. The larger the length of discarded fish, the
lower become the estimates of the effective mesh sizes.

Fishing mortalities: The first problem is to choose the fishing mortality coefficient
on the age-groups subject to maximum exploitation to put into the simulations.

This corresponds to the summed fishing mortality by all fleets on the same age-
groups. One way to do this is to choose the corresponding values from VPA
(Virtual Population Analysis, Gulland, 1965) averaged for the same years which
the basic data in the mesh estimation procedure cover.

Assuming a constant natural mortality coefficient, increases in the fishing mor
talities, assumed in the simulations, will give higher estimates of effective mesh
size, or to put it another way, to get correspondence between observed and simu
lated distributions, there has to be assumed a higher effective mesh size if the
fishing mortality is increased. If this is not done the simulated distributions will
have too large numbers of small fishes.

The second problem is to split the fishing mortality between fleets. If there are
age- or length-groups, where all fleets exploit the stock at maximum, the splitting
is done according to the proportion of catches in numbers by each fleet in these
groups.

There is another iterative way to estimate the split of F on fleets by which
‘educated guesses’ is made until the estimate of the total catch, by number or
weight, is distributed between the different fisheries in the same proportions as the
observed catches. This alternative requires, however, several optimizations, es
pecially if other input parameters, which affect the estimated catch distribution,
are changed concurrently.

A third method is to change the estimated proportions F until the estimated
fishing mortality on age groups subject to maximum exploitation becomes equal
to the observed fishing mortality in each fleet. The observed fishing mortalities
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generated by each fleet might be calculated from VPA. However, this requires that the
basic age compositions of the catch for each fleet are available for the years concerned.

Natural mortality M: In all applications of the model, the natural mortality co
efficient, M, was assumed to be constant for all length groups. This has been done
since it has been the usual practice in stock assessments. However, a length de
pendent natural mortality curve could easily be included. If M is changed, it should
be recognized that the input fishing mortality on maximum exploited age groups
probably also should be changed, since it is often derived from methods (VPA or
catch curves) where the calculated fishing mortalities depend on the assumed
natural mortality.

5. Use of the method for other purposes
The use of these methods is not restricted to estimating effective mesh sizes and the
yearly effects of a change in gear parameters or fleet parameters, although the
present description of the methods are focused on these possibilities. Effects of a
change in the discard practice, or a shift of a fishery to an area where the recruit
ment is different etc. may be estimated. The effects on the other fisheries of re
ducing or excluding one fishery may be estimated by reducing F or by setting F to
zero for this particular fishery. Thus prognosis on the separate fleets as well as for
the total fisheries may be given. This has been done by Sparre (1980), and Hoydal
(1977, 1980).

In the model the catch is calculated for a particular fleet, by using the product of
the discard curve, the selction curve, and the recruitment curve. Except for the
discard curve, the curves consists of an ascending and a descending part. As de
scribed above all parts of the curves are fixed by the input parameters, except for
the ascending part of the selection curve which depends on the effective mesh size
which is to be determined.

However, any other parts of curves may be estimated. If, for example, the
effective mesh size is determined by an independent method, the recruitment to the
fisheries may be determined by an appropriate rearrangement of the input para
meters. Or for example, the derecruitment could be estimated by fixing the selec
tion curve and let the guesses length at 50% derecruitment replace the initial guess
of the downward slope of the effective mesh size. If several of these different curves
are simulated, one should be aware of the possibility of circular arguments.

There are obviously possibilities to manipulate the input parameters in order to
get low estimates of effective mesh, especially by shifting the parameters for the
ascending recruitment curves or the discard curves towards higher length values.
However, accepting the observed length- (or age) distributions there are upper
limits to what the effective mesh sizes could be. Estimates of these maximum
possible effective mesh sizes are achieved by using the most ‘conservative’ input
parameters. This is examplified in the Arctic Fisheries Working Group (Anon.
1979) where the maximum effective mesh sizes for North-East Arctic cod and
haddock are given.



84 K. HOYDAL, C.J. RØRVIK & P. SPARRE

Questions may be raised about the validity of the exact estimates of the effective
mesh size. However, if one wants to investigate the effects of raising the legal mesh
size by, say, 35 mm, and one assumes this to correspond to an increase of the
effective mesh size by the same amount (35 mm), then it has been our experience
that these effects (in % change) are not very sensitive to the initial mesh sizes
chosen, that is if one choose the old legal mesh size or the estimated effective mesh
size. This means that STEP 2 used in the connection with STEP 1 may be useful
even when the results from STEP 1 are questionable, because the relative effects
will be less questionable.

6. List of symbols
a Index of age group.
C(e,T) The number caught in the time period TI to T by fleet e.
C(T) C(e,T) total number caught in the time period from TI to T by

all fleets.
CD(e5i) The number from length group i discarded by fleet e.
CL(e,i) The number landed of length group i by fleet e, theoretical value.
CT(e,i) Total number caught (landings + discards) of length group i by

fleet e.
D(e,T) Discard curve (the fraction not discarded) as a function of age, for

fleet e.
DL(e,L) Discard curve (the fraction not discarded) as a function of length,

for fleet e.
DLSO% (e) 50 percent gear-selection length of fleet e, for the descending part

of the curve.
DL7S % (e) 75 percent gear-selection length of fleet e, for the descending part

of the curve.
DRLSO% (e) 50 percent recruitment length of fleet e, for the descending part of

the curve.
DRL7S % (e) 75 percent recruitment length of fleet e, for the descending part of

the curve.
DILSO% (e) 50 percent discard length of fleet e.
DIL7S%(e) 75 percent discard length of fleet e.
DGSEL(e,L) Term in the descending factor of the gear-selection curve of fleet e.
DISEL(e,L) Term in the discard curve of fleet e(the fraction not discarded).
DRSEL(e,L) Term in the descending factor of the recruitment curve of fleet e.
DISC(e,T) The number discarded in the time period from TI to Tby fleet e.
DISCY(e,T,a) Discards of age group a in year T by fleet e (only used in the

prognosis part of the model.
E Number of fleets.
e Index of fleet.
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EF(e) Fishing mortality exerted by fleet e, on age groups subject to
maximum exploitation.

F(e,T) Fishing mortality at age T exerted by fleet
F(T) IF(e,T): total fishing mortality at age T.
FL(e,L) Fishing mortality at length L exerted by fleet e.
FL(L) FL(e,L): total fishing mortality at length L.
FLAND(e,T) Landing mortality at age T exerted by fleet e.
FDISC(e,T) Discard mortality at age T exerted by fleet e.
FL4ND(T) FLAND(e,T): total landing mortality at age T.
FDISC(T) IFDISC(e,T): total discard mortality at age T.
FLLAND(e,L) Landing mortality at length L, exerted by fleet e.
FLDISC(e,L) Discard mortality at length L, exerted by fleet e.
FLLAND(L) FLLAND(e,L): total landing mortality at length L.
FLDISC(L) FLDISC(e,L): total discard mortality at length L.
FAC(e) L75%(e)/L5O%(e).
GSEL(e,L) Term in the ascending factor of the gear-selection curve of fleet e.
i Index of length group.
I Number of length groups.
K von Bertalanffy growth parameter.
L Length.
L(t) Length at age t (the von Bertalanffy growth equation:

L8(1 — exp(—K(t — TO))).).
L8 Assymptotic length in the von Bertalanffy equation.
LG(i) Length group i. Length group i is defined as the interval between

LG(i) and LG(i + 1).
LAND(e,T) Number landed in the time period from TI to T by fleet e.
L5O% (e) 50 percent gear-selection length of fleet e for the ascending part of

the curve.
L75 % (e) 75 percent gear-selection length of fleet e, for the ascending part

of the curve.
LANDY(e,T,a) Landings of age group a in year T by fleet e (only used in the

prognosis part of the model).
M(T) Natural mortality at age T.
N(T) Stock number at age T.
N(T,a) The stock number at age a in year T(only used in the prognosis

part of the model).
NMESH(e) ‘New mesh size’, mesh size after change of gear of fleet e.
NFLAND(e,a) ‘New’ landing mortality (after change of gear) of fleet e, on age

group a.
NFDISC(e,a) ‘New’ discard mortality (after change of gear) of fleet e, on age

group a.
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OBSCL(e,i) Observed number landed of length group i fish by fleet e.
OMESH(e) ‘Old mesh size’ before change of gear of fleet e.
OFLAND(e,T) ‘Old’ landing mortality (before change of gear) of fleet e, on fish

of age T.
OFDISC(e,T) ‘Old’ discard mortality (before change of gear) of fleet e, on fish

of age T.

Q Condition factor.
R(e,T) Recruitment curve for fleet e, as a function of age.
RL(e,L) Recruitment curve for fleet e, as a function of length.
RCL(e,i) Relative number of length group i landed by fleet e. Estimated

(theoretical) value.
ROBSCL(e,i) Relative number of length group i landed by fleet e, observed

value.
RSEL(e,L) Term in the ascending factor of the recruitment curve.
RLSO % (e) 50% recruitment length of fleet e, for the ascending part of the

curve.
RL7S % (e) 75% recruitment length of fleet e, for the ascending part of the

curve.
S(e,T) Gear-selection curve as a function of age, for fleet e.
SL(e,L) Gear-selection curve as a function of length, for fleet e.
SEL(e) Selection factor of fleet e.
T Time (year), or age.
TI Youngest age considered.
TO The theoretical age of length 0 on the von Bertalanffy equation.
T(L) The inverse von Bertalanffy function.
TG(i) Age corresponding to length LG(i).
Ti Year when gears are changed.
T2 Last year of transient period.
T3 Some year after the transient period.
T4 Some year in the transient period.
W(a) Average body weight of age group a.
YIELD(e,T) Yield of fleet e in year T.
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Appendix

An example

The present (hypothetical) example deals with three fleets (E 3) and 15 five-cm
length groups (I = 15). The lengths are all in cm units and the time is in years.

The parameters in the von Bertalanffy growth equation are
L8 = 131.0, K= 0.13, TO = 0.0

Natural mortality is assumed constant for all age-groups
M = 0.2

Condition factor Q is given the value 0.01.
The observed length distributions are shown in Table Al. Gear and recruitment

parameters are given in Table A2. Tables Al and A2 are the input for the computer
program. In this example the relative length distributions are relative to the catch
of each fleet (i.e. Eqs. (16) and (17) are used).

For the sake of simplicity we have chosen RL5O%(e) = 0, RL75%(e) = 1.0,
DRL5O%(e) = 150 and DRL75%(e) = 149 which means that recruitment to
fishing grounds is assumed to be finished before fishing starts at a length of 10 cm
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Table Al. Observed numbers caught (arbitrary unit).

Total catch per length group
(numbers)

Length- 3
groups, cm Fleet 1 Fleet 2 Fleet 3 OBSCL(e,i)

i LG(i)—LG(i+1) OBSCL(1,i) OBSCL(2,i) OBSCL(3,i) e=1

1 10-15 110 11 19 140
2 15-20 648 25 42 715
3 20-25 3946 128 96 4170
4 25-30 16829 413 229 17471
5 30-35 32280 1344 627 34251
6 35-40 44682 3353 1163 49198
7 40-45 40688 7163 2420 50271
8 45-50 33015 10515 4562 48092
9 50-55 24782 10517 7349 42648

10 55-60 16243 8183 9747 34173
11 60-65 10162 4491 8926 23579
12 65-70 3714 1841 3839 9394
13 70-75 1761 1178 1235 4174
14 75-80 267 983 128 1378
15 80-85 6 8 5 19

Total 229133 50153 40387 319673

Table A2. Gear parameters.

Fleet,e

1 2 3

Selection factor: SEL(e) 3.00 3.60 3.60

L75%/L50%: FAC(e) 1.10 1.10 1.08

Descending part of the DLSO%(e) 150.0 150.0 150.0
gear selection curve: DL7S%(e) 149.0 149.0 149.0

Recruitment curve: RLSO%(e) 0 0 0
RL7S%(e) 1.0 1.0 1.0
DRLSO%(e) 150.0 150.0 150.0
DRL75%(e) 149.0 149.0 149.0

Discard curve: DIL5O%(e) 0 0 0
DIL7S%(e) 1.0 1.0 1.0

Fishing mortality subject to
maximum exploitation: EF(e) 0.450 0.225 0.225

Initial guess on mesh sizes, cm 10.0 12.0 12.0
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and no derecruitment is assumed. Thus, RL(e,L(t)) = 1.0 for all tin the simulated
length range. D1L50%(e) = 0 and D1L75%(e) = 1.0 implies that DL(e,L(t)) =

1.0 for all t, i.e. no fish are discardedin this example, which simplifies the sub
sequent equations.

In the present example LAND = C. If the parameter values in Table A2 are
inserted into Eqs. (14) with the expression for SL (Eqs. (7) and (8)) the system of
differential equations, (14), becomes:

I: dN(t) =
— 0.2 + 0.450 E1 + exp ( (L(t) — MESH(1)3.0)log3

dt L 0.3MESH(1)

+0.225 + exp ( (L(t)— MESH(2)3.6)log3 )i 1

L 0.36MESH(2) J

+0 225 F1 + exp ( (L(t) — MESH(3)3.6)log3 1 ‘
L 0.288MESH(3) Li

(Al)

j
dLAND(1,t)

= 0.450 Ei + exp(_ (L(t) — MESH(1)3.0)log3 1
dt L 0.3MESH(1)

dLAND(2,t)
= 0.225 [i + exp ( (L(t) _ MESH(2)3.6)log3 )]

IV:
dLAND(3,t)

= U.225 Ei +exp(—
(L(t) — MESH(3)3.6)log3 1dt L 0.288MESH(3)

where L(t) = 131.0(1 — exp(—0.13t))

To solve the system the values of N and LAND at time t= 0 must be given. The
values of LAND at time 0 should be 0, and N is given the value 1000. Since in the
last end everything is expressed in relative terms the initial value of N can be given
an arbitrary value.

The iteration procedure of optimization, i.e. the minimization of the sum of
squares (15), involves that the systems of equations Al are solved several times
for various choices of mesh sizes.

For the first iteration a guess of MESH(1), MESH(2) and MESH(3) must be
made by the user.

We shall not go into details about the Runge-Kutta-Merson method for numeri
cal solutions of differential equations which was used (for a detailed description
see e.g. Ralston 1956). Having solved the system, the functions N(t) and LAND(e,t)
become known and CL can be calculated from Eq. (3).

The next step is to calculate the estimated relative distribution RCL(e,i) (cf. Eq.
(17)) and to compare RCL with the observed relative distribution by the sum of
squares of differences (Eq. (15)).

If the sum of squares (15) is considered too large a new iteration is performed,
i.e. MESH(e) is assigned a new value and the process is repeated.
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How the new mesh sizes for the next iteration are generated will not be ex
plained here, since the methods applied are explained elsewhere. Actually, several
methods were tested, i.e. the Nelder & Mead Algorithm (see e.g. Nash, 1979), the
Peckham’s Mimization Method (Peckham, 1970), Newton-Raphson & Marquardt
method (see e.g. Dixon, 1972).

Table A3 shows the estimates of effective mesh sizes, i.e. the values of MESH
used in the last iteration, and their contribution to the sum of squares.

TableA3. Estimates of effective mesh sizes. ‘Sum of squares of deviations’ means
the sum SSD = [RCL(e,i) — ROBSCL(e,i)]2defined by (17).

Fleet, e

1 2 3

Initial guess on mesh size, cm 10.0 12.0 12.0

Estimate of effective mesh size, cm 10.66 12.76 15.09

Sum of squares of deviations, SSD 0.000686 0.000947 0.005165

The observed and the theoretical relative distributions for the three fleets are
shown in Figs A1-3. Table A4 shows the gear-selection curve SL (cf. Eq. (6)), the
relative calculated (theoretical) length distribution of catch, RCL, and the observed
relative length distribution, ROBSCL (cf. Eqs. (16) and (17)).

per mule

200 —

Fig. Al. Heavy line observed and thin line cal
160 — culated relative length distribution of catches

by fleet tio. 1.

120 —

80 —

40 —

L50°/,

I 4 I I I length (cm)10 20 30 40 50 60 70 80



ESTIMATING EFFECTIVE MESH SIZES 91

per mule

200 -

Fig. A2. Heavy line observed and thin line cal
culated’relative length distribution of catches

160
- by fleet no. 2.

120

80 —

40

L50°/0

I I I I I
10 20 30 40 50 60 70 80

per mule

240 —

Fig. A3. Heavy line observed and thin line cal-

200 — culated relative length distribution of catches
by fleet no. 3.

160 -

120 -

80 —

40

L50%

I Il I
10 20 30 40 50 60 70 80



T
ab

le
A

4.
Se

le
ct

io
n

cu
rv

es
(S

L
),

re
la

tiv
e

ca
lc

ul
at

ed
(t

he
or

et
ic

al
)

le
ng

th
di

st
ri

bu
ti

on
of

ca
tc

h
(R

C
L

)
an

d
ob

se
rv

ed
re

la
tiv

e
ca

tc
h

(R
O

B
S

C
L

)

x 0 p -e

Fl
ee

t
1

Fl
ee

t
2

Fl
ee

t
3

L
en

g
th

gr
ou

p,
A

g
e,

W
ei

gh
t,

’
1
0

X
i0

X
iO

X
iO

X
i0

X
i

cm
ye

ar
s

kg
S

L
R

O
B

S
C

L
R

C
L

S
L

R
O

B
S

C
L

R
C

L
SL

R
O

B
S

C
L

R
C

L

1
10

-1
5

0.
77

0.
02

0
0.

00
5

5
0.

00
2

3
0.

00
5

0
2

15
-2

0
1.

10
0.

05
4

0.
00

28
25

0.
00

5
9

0.
00

10
2

3
20

-2
5

1.
45

0.
11

4
0.

02
17

2
13

1
0.

00
26

30
0.

00
24

5
4

25
-3

0
1.

81
0.

20
8

0.
08

73
4

57
0

0.
01

82
94

0.
00

57
19

5
30

-3
5

2.
19

0.
34

8
0.

34
14

09
15

01
0.

02
26

8
27

2
0.

00
15

5
59

6
35

-4
0

2.
59

0.
52

7
0.

74
19

50
20

26
0.

07
66

9
68

8
0.

01
28

8
17

5
7

40
-4

5
3.

02
0.

76
8

0.
94

17
76

18
27

0.
19

14
29

13
92

0.
03

59
9

47
1

8
45

-5
0

3.
46

1.
07

2
0.

90
14

41
14

11
0.

44
20

97
20

04
0.

09
11

30
10

97
9

50
-5

5
3.

94
1.

44
7

1.
00

10
82

99
9

0.
73

20
97

19
82

0.
25

18
20

19
27

10
55

-6
0

4.
45

1.
90

1
1.

00
70

9
65

5
0.

90
16

32
14

86
0.

54
24

13
22

38
11

60
-6

5
4.

99
2.

44
1

1.
00

44
3

40
0

0.
97

89
5

95
0

0.
81

22
10

17
74

12
65

-7
0

5.
57

3.
07

6
1.

00
16

2
23

0
0.

99
36

7
55

4
0.

94
95

1
11

19
13

70
-7

5
6.

20
3.

81
1

1.
00

77
12

5
1.

00
23

5
30

4
0.

98
30

6
62

8
14

75
-8

0
6.

89
4.

65
6

1.
00

12
65

1.
00

19
6

15
7

0.
99

32
32

6
15

80
-8

5
7.

64
5.

61
5

1.
00

0
31

1.
00

2
76

1.
00

1
15

8

T
ot

al
—

10
00

0
10

00
0

—
10

00
0

10
00

0
—

10
00

0
10

00
0

SE
L

3.
00

-
3.

60
3.

60
F

A
C

1.
10

1.
10

1.
08

L
50

%
30

.2
45

.9
54

.3
L

75
%

33
.2

50
.5

58
.7

M
E

S
H

10
.0

6
12

.7
6

15
.0

9

In
th

e
m

id
dl

e
of

th
e

ti
m

e
in

te
rv

al
.



ESTIMATING EFFECTIVE MESH SIZES 93

Assessing the effect of a mesh change

A change of gear parameters is examplified in Table AS.

Table AS. ‘Old’ and ‘new’ mesh sizes.

Fleet, e

1 2 3

Old mesh size (effective mesh size), cm 10.66 12.76 15.09
New mesh size, cm 12.0 15.0 15.0

Thus, in this example we consider an increase of mesh sizes of fleets 1 and 2, and
slight reduction for fleet no.3.

Before the change of gears the stock is assumed in a steady state situation.
The stock number and the number caught are now recalculated to be given by

age group (cf. section 3).
The numbers caught before the change is not the average number caught during

the last years, but given by the solution to the system of differential equations (14).
As we now know the mesh sizes there is no need to run any iterational pro

cedure. The system (14) can be expressed in a somewhat simpler form by inserting
into it:

Fleet, e

1 2 3

L50% 32.3 45.2 50.1

log3
0333 0244 0275

L75%—L50% .

I:
dN(t)

= —{0.2 + 0.450[1 + exp(—(L(t) — 32.3)0.333)1_i

+0.225 El + exp(—(L(t) — 45.2)0.244)1_i

+0.225 El + exp(—(L(t) — 50.l)0.275)]1}
. N(t)

II:
dLAND(l,t)

= 0.450 El + exp(—(L(t) — 32.3)0.333)1_i
. N(t)

III:
dLAND(2,t)

= 0.225 El + exp(—(L(t) — 45.2)0.244)1_i
. N(t)

IV:
dLAND(3,t)

= 0.225 El +exp(—(L(t) — 50.1)0.275)1_i
. N(t)

where L(t) = 131.0 (1 — exp(—0.13t))
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The number caught in age-group a thus becomes
LANDY(e,T1,a) = LAND(e,á+1) — LAND(e,a)

The numbers caught and the number in sea long time after change of gear is
obtained by solving a system similar to A2, but with the new mesh sizes, and thus,
new values of L5O% and L75%.

The results are given in Tables A6 & A7.

Table A6. Numbers landed, yield and stock numbers before change of gears.

Age, a LANDY(1,T1,a) LANDY(2,T1,a) LANDY(3,T1,a) N(T1,a)

0 3 0 0 10000
1 270 10 1 8184
2 1650 116 15 6432
3 1127 318 93 3641
4 456 211 150 1597
5 159 79 75 577
6 53 27 26 195
7 18 9 9 65
8 6 3 3 22
9 2 1 1 7

10 1 0 0 3

YIELD(T1,e),
37.7 12.4 8.1 —tonnes

I YIELD(T1,e) = 58.2 tonnes

Table A7. Numbers landed, yield and stock numbers long time after change of gears.

Age,a LANDY(1,T3,a) LANDY(2,T3,a) LANDY(3,T3,a) N(T3,a)

0 2 0 0 10000
1 111 4 1 8185
2 1208 38 17 6591
3 1312 150 121 4228
4 596 194 202 2034
5 215 98 102 777
6 72 36 36 266
7 24 12 12 89
8 8 4 4 30
9 3 1 1 10

10 1 0 0 3

YIELD(T3,e),
43.4 11.1 11.0 —tonnes

I YIELD(T3,e) = 65.5 tonnes
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Table A8. Yields in the transient period. The rightmost column contains the percentage gain or loss

YIELD(e,T) — YIELD(e,T1)
from the gear change, i.e. 100%

YIELD(e,Tl)

Years Percentage
after change YIELD(l,T) YIELD(2,T) YIELD(3,T) YIELD(e,T) gain or loss

0 37.7 12.4 8.1 58.2 0
1 35.9 8.6 8.4 53.0 —9
2 38.8 9.3 9.1 57.2 —2
3 41.1 10.0 9.9 61.0 5
4 42.3 10.6 10.5 63.4 9
5 42.9 10.9 10.8 64.6 11
6 43.2 11.0 10.9 65.1 12
7 43.3 11.1 11.0 65.3 12
8 43.4 11.1 11.0 65.4 12
9 43.4 11.1 11.0 65.5 12

10 43.4 11.1 11.0 65.5 12

% change 15 —10 36 — 12
after 10 years

Only 10 age groups arc considered, as only very small fractions are made up by
the older age groups.

The main conclusion of the present exercise is that fleet 1 and 3 would benefit
(in the long term) from an increase in mesh sizes of fleets 1 and 2. In the short
term, of course, the effect of a mesh size increment would be a reduction of yields.

The development of catches during the transient period is summarized in Table A8.


