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Appendix 2.1: Monitoring and distribution of Pacific oysters in the Limfjorden
and Isefjord

Table A2.1. Estimates of Pacific oyster population biomass (tons) in the deep areas (> 3 m depth) in bi-
valve fishing area (Fiskerstyrelsen) of the Limfjorden from 2017 to 2022. Empty cells mean no sampling

of that fishing area in that year.

Fishing Area Number Population Biomass (tons)

Number Name Stations 2017 2018 2019 2020 2021 2022
1 Nissum Bredning, Sydvest 47 49.79 40.4 235 19.0 25 27.4 27.9
2 Nissum Bredning, Nordvest 40 46.00 441 58.4 51.9 53.5 78.7 99.4
3 Nissum Bredning,Sydgst 17 20.11 0.0 5.8 0.0 1.1 0.0 4.3
4 Nissum Bredning, Nordgst 17 19.34 0.8 0.0 0.0 21.0 3.6 21.9
5 Veng Sund, Lavbjerg Syd 17 16.22 0.0 48.7 0.0 16.4 0.0 315
6 Veng Sund, Lavbjerg Nord 29 30.02 30.8 5.0 28.9 9.3 325 38.1
7 Veng Bugt, Nord 33 39.59 0.0 9.0 0.0 7.7 10.8 49.4
8 Veng Bugt, Syd 33 31.87 26.7 344 98.7 156 208.8 215.0
9 Kés Bredning 50 43.94 64.5 13.0 141 19.2 1354 16.5
11 Salling Sund, Syd 12 12.44 16.0 15.7 6.3 28 1735 0.0
12 Lysen Bredning 7 6.13 35.3 18.3 94.1 19.1 14.7 5.9
13 Salling Sund, Nord 10 10.16 8.0 3.0 22.8 7.7 16.4 0.0
15 Sgnder Bredning 15 30.36 35.1 57.0 13.9 21.6 0.0 7.9
16 Dster Bredning 11 46.21 0.0 0.0 0.0 0.0 23.7 0.0
17 Risgarde Bredning, Vest 3 20.02 0.0 0.0 0.0 0.0 0.0
18 Risgarde Bredning, st 4 22.72 0.0 0.0 0.0 0.0 0.0
19 Hvalpsund 6 14.88 0.0 0.0 0.0 0.0 0.0
20 Lovns Bredning, Vest 9 27.39 0.0 0.0 0.0 0.0 0.0 0.0
21 Lovns Bredning, Qst 14 23.27 0.0 0.0 0.0 0.0 0.0 0.0
23 Mors, Vest 3 12.61 8.4 0.0 0.0 0.0 0.0
24 Nees Sund 2 6.47 0.0 0.0 0.0 0.0
25 Visby Bredning 1 19.14 0.0 0.0 0.0 0.0
26 Dragstrup Vig 1 18.30 0.0 0.0 0.0 0.0
27 Vilsund 2 12.04 0.0 0.0 0.0 0.0
28 Thisted Bredning, Vest 8 32.59 0.0 0.0 0.0 0.0
30 Thisted Bredning, Sydgst 7 27.48 0.0 0.0 0.0 0.0
32 Feggesund / Hovsgr Havn 8 14.04 0.0 0.0 0.0 231 26.7
33 Logster Bredning, Vest 35 40.51 10014 5123 10127 4909 4956 189.0
34 Legster Bredning 20 50.37 5539 6685 1436.5 631.4 199.0 78.9
35 Livg Bredning, Vest 21 46.26 0.0 20.7 47.9 0.0 8.4 30.0
36 Live Bredning, @st 18 36.21 0.0 116.5 7.4 39.9 35.4 445
37 Bjernsholm Bugt 13 35.76 12.8 0.0 0.0 13.4 7.4 0.0
38 Lagster Bredning, Jst 15 34.23 6.9 0.0 0.0 0.0 18.0 43.3
39 Legster Grunde 10 34.67 0.0 0.0 3.7 0.0 0.0 0.0




Table A2.2 Location of shore sites surveyed in 2019 and 2020 in the Limfjorden.

2019étation umber Fishing Area  Latitude  Longitude
DSC Salling Sund 13 56.7907 8.87469 9
1 Thisted 32 56.9754 892 15
2 Logster 33 56.9748 8.934 9
4 Logster 33 56.9451 8.90807 9
6 Live 35 56.9119 8.91426 9
9 Draby 14 56.8829 8.84245 15
Draby Vig Draby 14 56.8658 8.82817 15
13 Draby 14 56.8306 8.84411 11
14 Draby 14 56.8105 8.86758 13
15 Kas 9 56.6823 8.70587 15
Hestergrgddevej Agerg 23 56.6701 8.64911 15
18 Kas 9 56.6922 8.76948 15
20 Salling Sund 11 56.7109 8.77634 15
Salling Sund B Salling Sund 11 56.7307 8.81457 15
Salling Sund A Salling Sund 11 56.7483 8.83254 15
26 Agerg 23 56.7051 8.61664 13
27 Agerg 23 56.7201 8.62577 9
28 Agerg 24 56.7236 8.57441 9
29 Thisted 30 56.9384 8.84028 8
31 Thisted 30 56.9034 8.81576 8
33 Thisted 28 56.8933 8.7475 9
34 Thisted 28 56.8895 8.73329 7
35 Thisted 28 56.8877 8.68596 7
37 Visby-Vilsund 27 56.8828 8.64011 6
39 Visby-Vilsund 27 56.8628 8.64734 5
40 Visby-Vilsund 27 56.8385 8.64056 15
42 Visby-Vilsund 27 56.8325 8.63126 9
44 Visby-Vilsund 26 56.8178 8.64483 9
46 Visby-Vilsund 26 56.8106 8.66562 15
47 Visby-Vilsund 26 56.7922 8.61436 13
50 Visby-Vilsund 25 56.7742 8.55187 11
51 Visby-Vilsund 25 56.7575 8.55734 9
53 Visby-Vilsund 25 56.7387 8.50447 9
Branden Sender 15 56.797 9.02607 15
55 Sgnder 15 56.802 8.96284 15
56 Salling Sund 13 56.7805 8.91959 9
57 Salling Sund 13 56.7516 8.86807 15
59 Salling Sund 11 56.7228 8.83758 15
Harre Vig Lysen 12 56.7091 8.89731 13
Lysen Bredning Lysen 12 56.687 8.84077 22
63 Oster 16 56.8021 9.06298 15
64 Oster 16 56.7891 9.10377 15
65 Live 35 56.8436 9.06809 15




2020:

Station number Fishing Area Latitude Longitude N
66 Livg 35 56.8391 8.97772 15

68 Kas 9 56.6786 8.78953 9

70 Kas 9 56.6322 8.742 12

72 Veng Sund 6 56.6076 8.68916 9

73 Veng Bugt 7 56.5684 8.74249 9

74 Veng Bugt 7 56.5194 8.74044 12

75 Veng Bugt 8 56.4713 8.68527 11
Struer Veng Bugt 8 56.4997 8.61219 16
77 Veng Sund 5 56.5445 8.57332 9

78 Veng Sund 6 56.5844 8.54433 9

79 Veng Sund 6 56.6133 8.59229 10

80 Nissum 4 56.5625 8.55465 9

81 Nissum 1 56.5473 8.49743 1

82 Nissum 1 56.5577 8.47052 8

83 Nissum 10 56.5693 8.30642 12

84 Nissum 10 56.5872 8.30366 11

86 Nissum Udf 56.6003 8.25048 1

87 Nissum Udf 56.6254 8.23145 1

89 Nissum 216 56.7464 8.25163 3

90 Nissum 216 56.7696 8.28038 9

91 Nissum 216 56.7573 8.29917 9

92 Nissum 216 56.7193 8.31327 11

93 Nissum 2 56.6922 8.34923 9

94 Nissum 2 56.6812 8.35552 1

95 Nissum 2 56.6704 8.40145 9

96 Nissum 4 56.6368 8.47626 9

97 Nissum 4 56.62 8.49722 9

99 Nissum 4 56.5908 8.51465 11

103 Agerg 24 56.7199 8.47371 1

105 Visby-Vilsund 25 56.7939 8.48507 9

107 Visby-Vilsund 27 56.8733 8.62627 9

109 Thisted 28 56.9495 8.73148 11

110 Thisted 30 56.9598 8.79121 1

111 Thisted 32 56.9823 8.84069 1

115 Veng Bugt 7 56.55 8.63247 12

116 Veng Sund 5 56.5524 8.61214 12

117 Veng Sund 5 56.5773 8.63494 11

118 Kas 9 56.6503 8.6338 9

119 Nissum 1 56.5772 8.39496 8
Agger Tange Nissum 216 56.7209 8.25722 15
Kommune Salling Sund 13 56.7917 8.85833 35
Fur Oster 16 56.8068 9.02175 7
Renland Nissum udf 56.6718 8.21792 16
Renland Nissum udf 56.6699 8.21383 3




Appendix 3.1: Student report: Automatic detection and estimation of sub-
merged oysters from drone images
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In recent years, native Danish Limfjord Oysters have increasingly been out-
competed, in terms of food and space, by the invasive species of the Pacific
Opyster. In response, Dansk Skaldyrscenter (DSC), a part of DTU Aqua, has taken
steps to try and prevent this, by removing the Pacific Oysters where ever they can,
to strengthen the native Limfjord Oyster’s position in the Limfjord. One strategy
they have employed is using drones to fly along the coastlines and photograph
the oysters through the water, to get an estimate of how the environments look
from place to place, in order to know where to concentrate their efforts. This
has led them to hire researchers and drone pilots affiliated with DTU Space, to
develop an algorithm that may help them get an estimate of the number of oysters
in each image with the use of image analysis methods. Furthermore, the use of
multi-spectral cameras, and their performance compared to optical cameras, is also
one of the main objectives, in order to investigate if multi-spectral cameras are
better suited for the detection of objects through the water surface.

This report details some of the efforts employed to aid DSC in the detection
of the oysters in the captured drone images.
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1 Introduction

Ovyders are a salt-water bivalve mollusc that live in marine or brackish habitats.
They are mostly irregular in shape, and comes in a wide spectrum of szes and
colars The oyster isan important organism for many underwater ecosysems, and
provides habitat for a number of otha marine spedies. The oysda can sgnificantly
improve the quality and darity of water around it, by removing plankton and
partides from its water column, and it can also sometimes produce pearls, although
most are not very valuable. In the Limfjord of Denmark, it is said that the best
oysters in the world can be found. They are quiterare and in fact, the oyster bads
found jud outside the Dansk Skaldyreenter (DSC) are part of the lad large colony
of wild European oysters left in the world [NIELSEN-BOBBIT, 2020]. However,
oysters are not always a welcome sight in marine habitats For indance, the local,
native oyda (also known as the Limfjord Oyster) is currently bang out-competed
by the more aggressive Pacific Oyda, which replicates at a rate of 100 times that
of the Limfjord Oyster. The Pacific Oyster differs in shape, often being more
dongated compared to the round shape of the Limfjord Oyda. Dueto the groming
threat against the Limfjord Oy a, the Pacific Oyster is now consdered an invasive
species in Denmark, and must be removed in order to protect the local Limfjord
Oysters of Denmark.

To increase their gforts to dfectivdy lo-
cate and remove the Pacific Oysters, Dansk
Skaldyrscenter (DSC), which isa part of DTU
Aqua, has hired researchers and drone pilots
affiliated with DT U Space to devdop an algo-
rithm based on drone images of the oysters,
that can quickly segment what are oysters and
what are not oyders in the images. Further-
more, the algorithm should provide an estimate
of the number of oysters present, and where
exactly they are located. This will give Dansk
Skaldyrscenter a much better ovarview of the
current situation, and an edge in their eforts
to remove the Pacific Oystars for good. [Stub- Figure 1: Pacific Oysters (top) versus
gaard, 2020 Limfjord Oysters (bottom})

In addition to this task, another objective is to make a qualitative edimate
of the use of a multi-spectral camera, versus a normal, optical camera, which
is usually mounted on a drone. The mativation behind this objective isthat a
multi-spectral camera should, in theory, be able to penetrate dezper into the watar,
with less attenuation, and thus more effectivaly be able to provide visbility of the
oysters present, so the algorithm can segment the oysters with a higher accuracy.
But, asisdaborated upon later in this report, using a multi-spectral camera comes
with its own set of challenges.




1.1 Sites of interest

The Dansk Skaldyrscenter has six primary sites of interest, where Oysters can be
found. These, along with their main features, are illustrated below:
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All except the Wadden Sea, which lies in the southwestern part of the Jutland
Peninsula, are located in the Limfjord area of northern Jutland. The Limfjord
differs from the Wadden Sea, as it is a microtidal system, with a small tidal
amplitude between 15-50cm, and the oyster populations here all occur in the
subtidal zones, emerging only when the water levels drop due to the wind/sea level
pressure changes. But the sites in the Limfjord area may also differ from each other
a great deal, as can be seen in Figure 2-7 above. For example, Branden has many
types of algae and different oyster structures mixed with blue mussels, in small
reef patches. Meanwhile, Klosterbugten has large and healthy reef areas, many
at much larger depths. Furthermore, a site like Strandevejen has a rocky bottom
that looks similar to the oysters present there, while Lyssen Bredning has a much
lighter bottom sediment, making the oysters stand out much more clearly. These
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trait differences are important to take into consideration, and will yield different
results when trying to segment and classify the oysters at the different stes

2 Method

21 Hardware

The pictures of the oyster beds are taken by a drone with a mounted payload of
two cameras The MicaSense RedEdge-MX multi-spectral camera, and a standard
Go-Pro camera. The payload with these two cameras, as well as the type of drone
that carries them (DJI M-600), can be seen in Figure 8

] i A
Figure 8: Left: M-600 drone, right: Payload setup: GoPro camera (left camera) and MicaSense
RedEdge-MX (right camera)

The payload setup seen in Figure 8 allows the drone to take two pictures
simultaneocudy, one with each camera. In this way, both pictures will be taken at
the same time, and from roughly the same angle, which will make a comparison
between the two cameras feasible. this isillustrated, sde by side, in Figure 9.

Figure 9:



In the comparison seen in Figure 9, band one of the MicaSense RedEdge-MX
camera is used, but there are in fact five bands. Those five bands can be seen
illustrated in figure Figure 10, and show vastly different perspectives of the same
area. The reason for this difference of perspective is that each band has its own,
distinct wavelength (see caption in Figure 10).

Figure 10: Comparison of the five MicaSense RedEdge—l\'X spectral bands.
From left to right: Blue (475nm), Green(560nm), Red(668nm), Infrared(840nm),RedEdge(717nm)

Upon examination of Figure 10, note that in some of the bands with the
higher wavelengths, the large rocks are visible on the bottom, while in the lower
wavelength bands they are completely invisible. This allows the choice of spectral
band to depend on what one is looking for.

The MicaSense RedEdge-MX camera can be seen in Figure 11, along with
the DLS (Downwelling Light Sensor) 2. The DLS 2 is an instrument that provides
accurate and reliable data, significantly reduces the need for post-processing and
improves the radiometric accuracy. The DLS 2 also contain an integrated GPS,
making the setup procedure more simple. The DLS 2 records data on the amount
of light from the sky for each of the 5 bands of the Micasense RedEdge-MX camera,
and captures this data throughout the flight (embedded within the metadata of
each image for each band). In post processing, data from the DLS can be used
to correct for changing illumination conditions during flight. The data it collects
is based on its measures of irradiance, which is heavily dependent on the sensors’
orientation relative to the sun as it flies. For example, a light sensor pointing
directly at the sun will measure a different value than one pointing straight up
at the top of the sky. This is why it is important to have a correctly calibrated
magnetometer, which can provide heading and orientation information to help
specialized processing software (like Agisoft Metashape) to make better decisions
[Support, 2020d], [Support, 2020a].
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Figure 11: The Micasense RedEdge-MX camera (left) alongsde the DLS 2 sensor (right)
[Support, 2020b]

2.2 Theory

The wavelengths of the different spectral bands differentiate greatly from each
atha asthey servediffaent purposes. It isimportant to look into, as some of these
bands will potentially be able to penetrate deeper into the water column than a
normal RGB-camera. One of the main objectives of this report isto investigate
if thisis the case. An illustration of the wavdengths covered by the five spectral
bands, as well as their bandwidths, can be seen in Figure 12.

Blus Green Red Red Edage Near-Infrare

Visible Light Non-Visible Light

Figure 12: Thewaveengths of the five spectra bands in the MicaSense RedEdge-M X camera
[Support, 2020c]

Lowa wavdengths should, in principle, allow for less attenuation in the water
columns Due to this fact, this makes the blue and green bands of the MicaSense
RedEdge MX camera espedially promising for water penetration. T his is daborated
upon further in Figure 13:
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Figure 13: lllustration showing the amount of light a different depths [Reef2Redf, 2016]

As seen in Figure 13, the
blue band should penetrate far b Spectrum of Solar Radiation
deeper than any of the other v | visibile | Infrared  —
bands. The reason for this is d
that blue light is attenuated
and absorbed the lead in the
water. The deeper into the
ocean light travels, the maore
the dectromagnetic light is |
absorbed, which is why the os{ |
ocean becomes a more intense e C
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depth, as all the other wave- Figure 14: Distributvivze::‘:“l;‘imh(:?r:tmsit across the dif
lengths are being absorbed. So ¢ 2/ wavdengths [I'imothy?i!rdmer, zfzeo]
intuitively, one might expect
that there should always be
the greatest vigbility in the blue band of the multi-spectral camera. But it is
important to keep in mind that the pictures seen in Figure 10 are taken at a quite
shallow depth, with the degpest depth being around 2-3 metres, where not much
of the green light has been absorbed yet. Furthermore, note that the green part
of the light distribution is broader than the blue in the beginning, and it only
becomes thinner deeper beneath the surface. Additionally, Figure 13 illustrates
that transmission of light in coastal marine water environments actually has a

Radiation Above the Atmosphere

Black Body at 5250 °C
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larger amount of green light than blue light. And finally, as seen in the spectrum
of sunlight in Figure 14, there isin fact a larger amount of light intendty in the
green part of the spectrum than in the blue part, peaking between )= 500-550nm
and then decreasing thereafter. Even though the blue band should have the least
amount of attenuation, the intensity of light is a bit loser here at shallow depths,
because there isn't as much blue light as green light in aray of sunlight. So this
could be an explaining factor that the green band has more vigbility/ reflectance
in very shallow locations, while the difference then diminishes rapidly at increasing
depths, as explained by Figure 13 and Figure 14.

To conclude, the choice of the spectral band that is best used for detecting
oysters might not be as smple as saying the blue or the green band, but would be a
choice depending on the depth of the oysters as wel as other factors. Considering
that most oystas lie at a depth of around 0-3 meters, one might be tempted to
say that the green band would be preferable to use for classification of oystas at
these depths, but then again, as seen in Figure 15, the increased reflectivity is
a double-edged sword, as there are also significantly more disortion from light
rdlecting off the surface of the water, and the metal quadrant locking very smilar
to the oysters as well.

green band (rigl

Figure 16: pldufecfthesneara



Another constraint that is important to take into consideration when flying
with the MicaSense RedEdge-MX camera, is that water bodies are chaotic environ-
ments, and contain disturbances from sun glare, waves, refraction and reflection
effects, etc. Additionally, the exposure time and gain is adjusted automatically
within the MicaSense RedEdge-MX camera based on what it detects. But this
adjustment is built for agricultural field monitoring and not water environments,
which can make the pictures appear very dark. It is, however, possible to adjust
the gain and exposure time manually for each band. The exposure time and gain
are inversely related, when it comes to finding the best visibility conditions in
water bodies. In other words, when lowering the exposure time, one must raise
the gain. After some trial-and-error experiments in the field, it was found that
the MicaSense RedEdge-MX camera has the best visibility through water with an
exposure time of 7.8 ms and 2x gain (ISO 200), for depths of 1-3 meters.

3 Machine learning, Classification and Segmenta-
tion

The concept of Machine Learning (ML), which is an important subarea of Artificial
Intelligence, is the implementation of an idea held by Alan Turing: "How can we
build intelligent machines? Or more elaborately: Can we construct a machine that
can do the same things a human can do? and how may we do it? Turing proposed
an answer to this question. Instead of building a computer program that behaves
like a human from scratch, we should build a machine which, at first point, cannot
do a great many things, but is capable of learning from past experiences. This is
the fundamentals of Machine Learning.

Within Machine Learning, there exist many different algorithms and ap-
proaches for solving a problem. The approach depends heavily on the type of the
problem at hand. If the user has an existing ground truth, in other words a "target"
of what the outcome should look like, the user would, in most cases, make use
of Supervised Learning. However, if no such ground truths are available, the user
would rather look at the statistical similarities of the data set, an approach which
is known as Unsupervised Learning. These two categories will now be described
more in-depth in the following subsections.

3.1 Unsupervised Learning

The concept of Unsupervised Learning is to learn without a teacher. In other words,
one attempts to perform a clustering/grouping of data without having knowledge
of the "truth" before hand (also known as a priori knowledge), and instead looks at
the statistical similarities within the data, in order to group different observations
into different classes. These groups are separated from each other in a so-called
feature space, where the area that is spanned by each class is known as a cluster.
Three examples of simple cluster types can be seen illustrated in Figure 17.
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Figure 17: Three smple, disdance-based duster types Thecdor indicate the K = 2 duders

3.2 Supervised Learning

The concept of Supervised Learning is the process of classifying data based on
some pre-defined ground truths. In its essence, the user makes use of a data set
comprised of N obsarvations, x1,...xy, and N targets 4. ... yy and then attampts
to develop a way to predict the targets y from the observations x:

y=flx w)+e (N

where w is a vector of tunable parameters and ¢ represents a noise term. The
learning then consists of the sdection of parametas w based on the training data,
X,¥.

Supervised Learning is limited in terms of scalability of the target function
at hand. While Unsupervised Learning is the natural procedure for cognitive
mammals (us), it might be diffarent for a computer. So one must always adapt the
strategy to the problem.

3.3 Classification results with Supervised Learning

T here exid s countless machine learning models, too many to mention here. Apart
from the Supervised and Unsupervised Learning categories, there are also the
Sami-Supervisad Learning and Reinforcement Learning categories, although those
will not be mentionad further in thisreport. To give the reader a better ovarview, a
simplified but good representation of some of the mod commonly applied machine
learning moddswit hin thar respectivecategories can beseen illustrated in Figure 18
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In this project, the feature of interest is the oyster, which is photographed
lying either on the exposed sand above the sea level (usually during low tides), or
submerged beneath the water. The oyster is a white or light-colored blob feature
(in Computer Vision, a blob (Binary Large OBject) is a region of connected pixels
in an image, in which some properties are constant or approximately constant
[what-when-how, 2020]). It comes in many various sizes, and can at most times be
distinguished from the bottom substrate, which consists of sand, mud, pebbles etc.
The classification of the oyster is challenging, due to various factors such as the
refraction of objects being photographed through the water surface, the number of
particles in the water which attenuates the signal, glare from sunlight on the water
surface, waves and movement in the water, etc.

To begin with, classification will be done based on RGB (Red,Green,Blue)-
based images of oysters, taken by a Go-Pro camera from above the water surface, to
demonstrate the utility of various image analysis models. The Supervised Learning
approach is attempted first. Considering that there does not exist any label data
for the drone pictures, since those were captured by the author and his associates,
these ground truths are drawn manually.

The model of choice in this category is the Quadratic Mazximum Likelihood
Classification algorithm. The reason for choosing this algorithm is that it is a
relatively simple, but robust, algorithm based on well-established concepts within
Machine Learning, such as Bayes’ theorem and the Mahalanobis Distance, and it
is well suited as a starting point for the classification purposes.

The focus of this algorithm is to produce a thematic map from the image
data, where the digital numbers of the image represent the reflected or emitted
Electromagnetic(EM)-radiation in different wavelength bands. Various physical
objects/regions, such as light or dark oysters, sand in various colors, rocks etc.
will be grouped into different classes as ground-truth beforehand by the author,
using a polygon-drawing command named Roipoly in Matlab. Then the classifier
is trained on the image and tested to see how well it classifies the physical objects
in the image. A flowchart of how the algorithm operates can be seen in Figure 19
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Figure 19: Flomchart of the Quadratic Maximum Likdihood algorithm

For further daboration on how this algorithm works, the interested reader
may refa to subsection 6.1 in the appendix.
To train the clasdfier, the training image (image No. 884) seen in the left side
of Figure 20 was used, where eight distinct classes were assumed to be present:
Light Oydlers (1), Dark Oydfers (2), Light Rocks (3), Dark Rocks (4), Algae (5),
Underwater Sand (6), Brown Sand (7) and finally Misc Obyects (8 being the car

tire) .

Figure 20: Image No. 884 for training (left), and test image 889 (right)

After training the algorithm on this image, the algorithm is tested on a
different image (image No. 889), se=n in the right side of Figure 20, which resulted
in the following results seen in Figure 21.
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Figure 21: Test image 889 classification results

In addition, the confusion matrix for the classification results can be seen in
Figure 22, showing the predicted class being and the true class predictions. The
elements on the diagonal is when the predicted class equals the true class, which is
the desired scenario.

Confusion matrix for image 889

1 310 6499 5073 440 ] 8 399 2362
2 302 12874 12375 564 7 339 673 73
3 2109 781 4495 2 264 4923 2689

s 73 16 2628 2778 140 217 484 221

<]

&
5 3 817 1034 491 939 8401 892
6 49 74 6382 1973 100 475 " 295
7 59 1 2490 3703 209 455 2066 120
8 73 14200 42683 1370 o7 155 1104 3031

1 2 3 6 7 8

5
Predicted Class

classes
beforehand in this way can potentially lead to some problems. Also, since the
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chosen dasses used for the targets are manually drawn by the user, this can also
potentially lead to arathe large human-error factor aswell. T his bags the question
if the Unsupervised Learning method may be a better approach to solving the
oyster classfication problem.

3.4 Classification with Unsupervised Learning

Now, the approach of Unsupavised Learning is altempted. Referring to Figure 18,
thae are many algorithms to choose from. However, one of the most well-known
algorithmsis that of the K-means clustering.

3.4.1 Classification with the K-means algorithm

In short, the K-means dustering groups observations into K initial clusgas Then,
it calculates the euclidean didance of every observation to each cluster center (or
centroid). Each obsarvation is assigned to the cluster centroid that is closest to
it. When the grouping is completed, the mean of all cbservations bdonging to
each clugter is computed, and the new dusder "centroid’ is moved to this mean.
Then, each distance is calculated again for each observation, to see if some of the
cbsarvations move to a different cluster after the clusea centroid has been moved.
When the cluder centroids no longer move, the K-means algorithm is done and
the data has been successfully clusaed. The algorithm workflow is illustrated by
the flomchart seen in Figure 23
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Figure 23: Flowchart illustrating the K-means workflow [Lai, 2017]

For further daboration on how this algorithm works, the interested reader
may refa to subsubsection 6.1.4 in the appendix.

T he reason for usng the K-means clustering algorithm is that it works well
with data such as pictures of gydars, since oysdastend todther liein great dustas
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or lie sparsely and separated from each other on the ocean bottom. Additionally,
they are often easily distinguishable from the bottom substrate. In this way, one
can say that the oyster classification problem 'mimics’ the way that the K-means
algorithm is usually explained. Furthermore, it is always a good idea to use the
K-means algorithm as a starting point, to get an overview of what the data and
environment looks like, since it is also a quite simple and intuitive algorithm that
is easy to understand and interpret. This makes it a good first step, that one can
use to move into more advanced techniques later.

When running the K-means algorithm it can be helpful to let Matlab compute
its estimate on the optimal K amount of clusters before clustering the data. This
can be done with a command from Matlab’s Machine Learning Toolbox named
evalclusters, which for the image should return the optimal amount of clusters
(optimal K). Running this algorithm returns an optimal K of only 4, instead of
the initial 8 classes that was assumed by the author to be present in the training
image. After the K-means algorithm is done, it returns a nice clustering, where
most of the oysters has been clustered correctly into class No. 3, as can be seen in
Figure 24

K-means classification of image nr. 834, with evaluated optimal 4 clusters o

cass (1)

cass 2)

Clss (3)

5 3000

Figure 24: Results of the K-means classifcation

3.4.2 Classification with the Gaussian Mixture Model

A different approach to the Unsupervised Learning problem is to make use of a
density-estimating approach instead, such as the Gaussian Mixture Model (GMM).
The reason for choosing this algorithm, is that the GMM is more flexible than
K-means, as it can account for clusters of different shapes, and informs the user
of how probable the data is as well. It is also a lot less sensitive to data scaling,
which is good considering the drone photographs environments of different depths,
and features of different sizes and shapes.
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The GMM modd makes use of the multivariate normal didribution as a building
block to create a more flexible distribution. The goal is to describe the probability
distribution a given set of observations X has originated from. For every cluster,
it is going to learn a Gaussan distribution that explains what that cluster looks
like. In general, the GMM modd is more flexible than K-means, as it can account
for clusters of different shapes, and it also tells the user how probable the data
is, making it easier to choose the K amount of dusters. In addition to this, it is
also much less sendtive to data scaling. The workflow of the Gaussian Mixture
Modd, as implamented through Matlabs Machine Learning Toolbx, is visualized
in Figure 25
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Figure 25: Flowchart of the Gaussan Mixture Modd
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For further elaboration on the workflow of the GMM model, the interested
reada may refer to subsubsection 6.1.5.

Clustering the image with 8 clusters returns a classfied image, that can be
seen illustrated in Figure 26

so0

s000

Figure 26: Full RGB-classfication with a Gaussian Mixture model
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When dasgfying with the GMM mode for 8 dasses, it seems to classify
oysters into different kinds of oygters (yellow and turquaise). It also scems to
differentiate between different types of sand. Very light and exposed sand is orange
in colour, while light and submerged sand is blue, and the red of the sand isather
red or purple in color. Interestingly, it also classifies the tire as being one big,
donut-shaped oyster. Hence, the algorithm seems to account for and segment the
oystas of different colors and shapes. The above results proves that it is possble
to quickly segment the image into different classes. However, if one wishes to get
an estimate on the number of oysters being present in the image, which is one of
the objectives of this project, the methods of | nd ance and Semantic Segment ation
may be a betta chaice, which looks only at the desired dass of intaest and leaves
the rest of the features as they are in the input image.

4 Oyster segmentation

In image analyds, an important concept is that of segmenting images, in order to
single out particular features of interest. In relation to this project, this can be
done to segment and count the number of oysters present in each image frame.
There are two main types of ssgmentation methods to consider: the Semantic
Segmentation and the Instance Segment ation.

BERE 00y
gan | |

Inputimage Semantic Segmentation Instance Segmentation

Figure 27: A comparison of Samantic and Instance Segmentation [Datasciencecom, 2020]

Taking Figure 27 as an example, Semantic Segmentation is when every object
belonging to a spedfic dass (in this case, chairs) islabdled asthe same classfication.
In other words, it treats multiple cbjects that may belong to the samecdassasa
single entity.

Instance ssgmentation, however, takes the Semantic Segmentation algorithm a step
furthe and counts evay “instance’ of the chair-category as a separate dass, thus
being able to distinguish between different "types" of chairs, for excample.

For segmentation, the input image shown in Figure 28 (image No. 13) will be usad:
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Figure 28: Input image No. 13

Before any segmentation can be done, one must apply the proper preprocessing
steps Firstly, the image mud be smoothed with a 2-D Gaussian smoothing kernel.
The reason for this is that each oyster has a lat of irregularities, discolourings
etc. on its surface, that the algorithm will otherwise disinguish as bang separate
oysters. An illudration of the importance of this, as well as the difference between
using different dandard deviations (sgma) for the smoothing kerndl, is shown in
Figure 33.

4.1 Results with Semantic Segmentation

After the Gaussan smoothing has been done, it isfairly simpleto paform Semantic
Segmentation by using a threshold value. All pixes in the image have a pixd
value between 0 and 255 in each band of the RGB-spectrum. Since all oysters in
the image have a rdatively high pixd value, i.e oyders are usually very white or
appraximating a white colour, the threshold can be set quite high, such as 150.
T hen, a mask is made on the image which filters out all pixds above that threshdd
value, and color codesit. The workflow of the Semantic Segmentation isillustrated
in the floachart of Figure 29
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Ferform a 2D goussian
| Defnesmoothing kemel | _—p  fiter over Image  —
walue (sigma) Imgaussfilt{X_IMG sigmsa)
mask im_rgb ‘Semantic Segmentation
Define mask Apply mask anto Visualize the picture
im_Gauss > threshold | P mage M ith the mask
X IMG - maskc

threshold

Define threshold value

Figure 29: Flomchart showing the workflow of the Samantic Segmentation agorithm
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Using the algorithm described above highlights most of the oysters, however
some of the very brown or dark oysters are not segmented properly, because
thdr intensity value is lower (130-140 for ecample). One could jud lower the
threshold value to include this, but unfortunatdy some of the sand is so light it
also appraximates these values of around 130-140. T his means that if one lowers
the threshod too much, most of the sandy bottom will potentially be dassified
as one, very large oyster, which is naturally undesirable. The reailts of Semantic
Segmentation can be seen illustrated in Figure 30.

500 1000 1500 2000 2500 000 3500 4000 4500 5000

Figure 30: Results of the Samantic Segmentation

In Figure 30, mod oydas have been color coded a red color, although it isa
bit hard to see from the current disgance. Hence, a zoomed in view is provided in
Figure 31, covering the region bordered by the black rectangle seen in Figure 30.
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Figure 31: Results of the Samantic Segmentation, zoomed in to the black rectangle shown in
Figure 30

It appearsthat not every oysta has been successfully segmented, although the
majority has been. T his, again, has to do with the choice of threshdd. Lowering
the threshold could include more oystas, but risk that the sandy bottom begin to
be ssgmented as oyders as well.

4.2 Results with Instance segmentation

While Semantic Segmentation is a good firs step to single out the oysters in
an image, it is not sufficient if one wants to count the amount of oysters in the
image as separate entities, i.e count each “instance” of the oyders This is
where Instance Segmentation comes into play. Indance Segmentation also makes
use of a Gaussian smoothing kernel at first, like Semantic Segmentation. Then,
followming the smoothing step, the Walershed algorithm is applied to the image.
The watershed algorithm is in itself, a type of ssgmentation in image analygs. It
treats the image as if it was a topographic map, where the brightness levels of
every pixd represants the haght of the pixd within the map, and then it finds the
lines that run along the top of the ridges T he concept is that if oneimagines a
bucket of water is poured out over the map, the water will then didribute itself and
collect into different catchment basins of different heights, corresponding to each
local minimum in the image. If water falls on the watershed ridge line separating
two basins of equal height, where each basin is flooded to the leve just before
they merge with each other, it would be equally likely to collect into eitha of the
two catchment basins. The algorithm then constructs a one-pixd thick dam {or
ridge line) separating the two regions. The main reason for using the watershed
algorithm in this context is that the oysters can often lie in cduders, which can
make it difficult to didinguish them from one ancther. Thisridge lineis then what
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is used to separate oydears from each otha, by defining hard lines between oysters
that lie very dose together.

Following these steps, the image is ready for instance segmentation. Firstly,
the regional maximum in connected components of pixels with a constant intensity
value is found. Secondly, the centers and centroids of these points that are larger
than our defined threshold aredefined, based on the propaties of the image regions.
Ladly, the centas of the Radial Basis Function mode is used to retrieve the final
Instance Segmentation of interest. T he full workflow can also be seen illudtrated in
the flowchart in Figure 32
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Figure 32: Flowchart illustrating the full workflow of the Watershed Algorithm and the Instance
Segmentation

The result of this algorithm can be seen in Figure 33, usng four different
values of Igma, i.e the gandard deviation of the 2-D Gaussian snoothing kernd.
Note that theresults are vadly different depending on which value of sgma that
is used.
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Figure 33: Results of the Instance Segmentation for four different values of sigma

It can be a little difficult to visually see what is happening in Figure 33,
because the pictures are very large and contain very many pixels. To better
demonstrate what is going on, the figure can be shown again, but zoomed in, to
better show how the clusters of oysters are being segmented, as seen in Figure 34.
Each 'red dot’ corresponds to one oyster being found by the algorithm.
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Figure 34: Results of the Instance Segmentation, zoomed in
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As seen in Figure 34, using a sgma value of less than 4 leads to dasdfying the
same oysda as multiple different oysdas This problem seams to disappear with a
sigma of four. One dosnsgide of this however, isthat a sigma of four sometimes
doesn’t clasafy some of the darkest or most obscure oysters, but this is a better
tradeoff than counting the same oysters multiple times, in the authors opinion.
Otherwise, a sigma of three can also be chosen, or a value between a sigma of
three and four. Using a sigma higher than four leads to a lot of oysters not being
detected at all.

To get a final dassification success rate, the picture in Figure 35 will function
asagrourd truth. |.e the amount of oysers in the followming picture has manually
been counted beforehand, and then the algorithm has been run, to see how many
oyders are being dassified correctly as distinct oysters.
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Figure 35: 161 r;laludly u:nntéj wsters

In total, the author has counted approximately 161 oysters in Figure 35. The
count is made by eyeballing the picture, and as such may be prone to human error.
The picture here is the same as what was used as input in Figure 34. Comparing
these figures with each other, it seems that the sigma that comes closest to the
ground truth isin fact a mean value between three and four, i.e a sigma value of
3.5 would produce the most accurate result for counting the oysters in the image,
leading to a result of 157 oysters, as seen in Figure 36.
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Oyster detection in image 20190426-Lysen-Bredning-013.JPG
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Figure 36: Oysters detected with a sigma of 3.5

Compared to the ground truth, this is a successful classification rate of 97.5%.

Now that the "ideal" environment of segmenting oysters has been covered, it raises
the question: how will this classification rate look for oysters that are submerged
underwater?



24

4.3 Instance Segmentation results with submerged oysters

For this test, the picture in Figure 37 will be used:
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Figure 37: Input image 1

This region has the deepest water depth of the set of pictures being used in this
analysis. As is apparent in the picture, oysters seem to be a bit darker here, likely
due to the signal attenuation through the water. Furthermore, there seem to be a
lot more oysters that are darker in colour. If detection of these brownish oysters
are of interest, the threshold needs to be adjusted. Running the algorithm for this
picture with a sigma value of 3.5, yields the following results for the full picture,
and a zoomed-in picture, respectively, as seen in Figure 38 and Figure 39:
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Figure 38: Instance segmentation results, 406 submerged oysters, threshold: 150
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Figure 39: Instance ssgmentation results, 80 submerged oysters, threshold: 150

As can be seen, the algorithm manages to find 4086 oysters in the full image
here, and about 80 oysters in the zoomed in image. It is also apparent that the
darked oydeasdo not aways get detected. Furthermore, it is not certain that all
detected "white blobs' are oysters, but rather just white rocks But overal, the
algorithm seems to work according to what it istold, i.e find all the distinct blabs
with an intensily value above 145, even under submerged conditions

4.4 Instance Segmentation results with a MicaSense RedEdge-
M X multi-spectral camera photo

For the lagt part of this chapter, the ind ance ssgmentation of aysters photographed
by a MicaSense RedEdge M X photo will be examined, and compared to a corre-
sponding Go-Pro photo of the same area, taken at the same time.

The following 3 pictures will be compared.

Figure 40: Go-Prophoto
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Figure 41: MicaSense blueband (left} MicaSense green band (right}

Firstly, Insance Sagmentation is paformed on the Go-Pro picture, as seen in

Figure 42 Intaestingly enough, after playing around with the sigma value, a very
low sigma value is required here to get the besdt segmentation (1088 oysters with
asigma of 1.5 - 2). Increasing it beyond this leads to a lot of oyders not being
classified at all, which also suggests that the choice of sigma is dependant on the
depth of the oysters in the image (more refraction = less sgma). Additionally, the
effects of glare from sunlight is very widespread in these pictures, leading to the
glare from the surface being classfied as oystas by the algorithm. Howeve, this
issue may be circumvented by indalling a circular polarized filter on the camera.
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Figure 42: Results of the Go-Pro Instance Segmentation

Now, the same algorithm is run on the MicaSense photos, usng the same



value of sigma:
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Figure 43: Results of the MicaSense Blue Band Instance Segmentation

It isseen that the blue band of the MicaSense camera sean to make the oysers
"light up” in a different way, which is interesting. Also, apart from the distortion
from sun glare, the rectangular box around the middle of the image causes a lot
of distortion as well, as it has the same reflectivity values as oysters. Hence, the
algorithm counts the bax as multiple different oysters. It is also important to note
that there are still many oysters or features that do not get segmented (the darker
or more gray features on the bottom).

Now, the instance segmentation is performed on the green band image.



6283 oysters found
with threshold 145 and sigma 1.500000e-00

o 5 i e
100 200 300 200 00 600 000 $00

1100

Figure 44: Reaults of the MicaSense Green Band Insance Segmentation

From Figure 44, it is clear that the reflectivity values of the oysters " explode”
in the green band. Why this is the case is not known, but may confirm earlier
speculations that oysters, baing a living organism, has a much higher reflectivity
value than other features on the ocean bottom. Unfortunately, they reflect “too
much”, and it is difficult to see what is what in the image, and also if it is only
oysters reflecting this way, or if other features do so as well. But it looks like a
promising method to make the features of interest stand out clearly in contrast to
the background, even without any image analysis processing being made.

To further examine the above results, the sgma is increased dightly to a value
aof 3, to suppress some of the blobs a bit and distinguish them more from each other.
Then, histogram equalization has been made on the image to further enhance the
contrasts of the image (the background becomes more dark, the features of interest
become more white). This leads to the fdlowming result in Figure 45.
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Figure 45: Resaults of the MicaSense Green Band Instance Segmentation, with histogram
equalization and a sigma of 3

Basad on what was seen in the Go-Pro image in Figure 42, we know that the
right half of the image is the only section containing oysters, and the left part of
the image contains a kind of algae. T he above result in Figure 45 gives us a nicer
ovarview of what is going on, and what is what in the image. It can also be seen
that doing this histogram equalization lowers the amount of oyders being wrongly
detected in the left section of Figure 45 (false postives). One could experiment
with this further and try to lower the threshold to exclude more of them, but at
the risk of not detecting oysters that actually are oysters (false negatives).

While the algorithm still does not perform perfectly, and counts features
that are not oyders as bang oydas, this still showcases that the MicaSense
RedEdge-MX camera holds potentia for photographing oyders beneath the water
surface.

5 Discussion

One of the main obstacles of this project was to make an automated estimation of
the sigma value, i.e the Gaussan smoothing kerne, mentioned in the previous
sections, 50 it could quidkly iterate through all the pictures taken by the drone,
and optimally ssgment them all at once. This methed is also known as Automatic
Scale Sdection in literature (see [Lindeberg, 1996]). One approach to solving
the task, and making an automated selection of the sigma value, was through
scale-space representation methods, whae the same image was to be modelled on
multiple scales, successively suppressng fine-scale information until the optimal
smoot hing was achieved. T he degree of smoothing would change from picture to
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Image nr 43

Image nr 43 with matched histogram comparison

Figure 48: Histogram matching distorts the image

Of course this is an extreme example, as the histogram of a very homogeneous
image is matched to the histogram of an image with many different features. But it
shows that a more complex method is needed to make an automatic scale selection
for all the pictures in the series.

Finally, it was decided to try and perform Instance Segmentation for a lot of
randomly chosen images, with manually (drawn) ground truthing, to see if there is
some trend in the optimal value of sigma. The results are seen illustrated below,
where GroundTruth is the number of oysters in the figure estimated by the author,
S3 count denotes the algorithm’s estimate of oysters using Instance Segmentation
with a sigma value of 3, and S4 is the algorithm’s estimate using a sigma value of
4.

Image No. GroundTruth count S3 count % diff S4 count % diff

15 230 260 13.04% 199 13.48%
27 23 204 786.96% 89 286.95%
64 78 104 33.33% 73 6.41%
109 113 134 18.6% 101 10.62%
141 685 706 3.06% 507 25.98%
89 42 9 78.57% 3 92.86%
199 71 170 136% 108 50%

4 89 46 48% 24 73%

32 53 99 11% 44 17%

126 63 5 92% 3 95.2%

In every case, a sigma of 3 or 4 was optimal, where the classifier with the best
percentage difference is marked with bold. The % difference means the percent-wise
difference from a 100% classification rate (i.e. a % diff equal to the value 0 would
be ideal, while a high number is undesirable). The choice of images was based on
having a large variation compared to each other; For example, one set of images
had oysters that were covered with algae, while some featured dense clusters of
oysters, and a third set featured oysters sparsely distributed over the ocean bottom.
It can be seen that it performs very badly for a number of the images above. For
example, the reason for the classifier performing very poorly in image No. 27, is
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due to the sand bottom being very bright, causing the algorithm to confuse it with
oysters, as the color intensity of the sand crosses the threshold for what colors an
oyster may have (generally) across all the images. So at first sight, it seems like this
algorithm performs quite poorly at segmenting images containing oysters. But that
is only true for images that have very bright sand, or are at a greater depth, where
the effects of refraction and signal attenuation are greater. For images where the
oysters stand out clearly in contrast to the background or other features, it seems to
be performing well at counting the oysters. Even more surprisingly, the algorithm
proved to be especially good at estimating dense clusters of oysters (separating the
oysters from each other), much more than what was expected. So the take-away
lesson is that the algorithm may be used with a good classification rate, but only
for pictures with an "ideal" environment. Unfortunately, that excludes a large part
of the data set at this point. It is therefore up to the user to choose an appropriate
sigma value for each individual image. Based on the results in the previous chapter,
the author argues that going for a sigma value in the interval between three and
four will, in most cases, lead to a fairly good segmentation.

5.1 Future work
5.1.1 Automatic Scale Selection

There are many directions in which to go to improve the current algorithm. One of
the most important ones is to implement an automatic scale selection that works,
as was elaborated upon earlier in this section. However, there are also other fields
of image analysis methods that are yet unexplored, but may hold potential. One
of the most promising (but also most difficult and time-consuming to implement)
is that of a Deep Learning approach.

5.1.2 Deep Learning approach

Implementing a neural network, such as a Convolutional Neural Network, to
segment the images may at first seem like a very desirable direction to go for.
However, implementing a neural network (NN) for this task may prove to be very
time consuming, and potentially expensive too. One of the largest obstacles in
implementing a NN is the labelling of the data.

In Supervised Machine Learning, an objective is to learn a mapping f, :
x eP'—s y, from observations x to the target y, using a dataset of D =x;, ¥y, n
of a finite size N (e.g. for image classification, translation etc). Unfortunately, due
to the constraints of dimensionality, high-dimensional inputs (images) and complex
models (deep learning) require that one uses very large data sets (millions of pairs
(x,¥)). In other words, if you have labeled data, that means your data is marked
up, or annotated, to show the target, which is the answer you want your machine
learning model to predict. In general, data labeling can refer to tasks that include
data tagging, annotation, classification, moderation, transcription, or processing.
From: [CloudFactory, 2020].
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Due to the process of labelling large amounts of data being a very tedious, repet-
itive and time-consuming process, most companies outsource the data-labelling
process to third-party data-labeling services, such as Cloudfactory for example
[CloudFactoryWeb, 2020]. In fact, Analyst firm Cognilytica recently stated that
"fully 80% of AI project time is spent on gathering, organizing, and labeling data."
[CloudFactory, 2020].

To do this oneself, in practice, one would first need to have thousands of
images all showing approximately the same thing (drone images for example, taken
at a specific height over a specific kind of environment containing oysters), as was
done for this project. Currently, no pre-trained neural networks exist that contain
data for this specific kind of classification task. Secondly, one would have to label
the data, which involves manually drawing polygons on every area of the image and
color coding what is what in each image (allocate each region to a user-specified
class), to tell the computer what to look for. And then do that for about a thousand
images, each of which has dimensions of approximately 5000x3500 pixels. After
this, it is possible to perform a number of data augmentation tasks to synthetically
increase the label data set. This could possibly yield a label data set of a couple of
thousand images, enough to train a small, primitive neural network.

To shorten the labelling process, it may also be possible to do it automatically
somehow, such as using Semantic Segmentation or K-means clustering to partition
each image into a class, and input that as a labelled image. The aforementioned
approach was attempted for this project, but it did not yield any feasible results.

It is not certain whether a neural network like the above could outperform the
already existing image analysis methods that have been used so far in this project,
primarily due to the very small size of the network. But, if one managed to get a
proper set of labelled data for training the neural network, there are two neural
network architectures that comes to mind in regards to segmenting the oysters:
1. The DCAN (Deep Convolutional Auto-encoder Network) Architec-
ture
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Figure 49: The DCAN Architecture
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This architecture has 2 decoders, each based on a different problem. The
above example is used for segmenting cells which is a 'blob detection problem’
similar to that of detecting oysters. In the above example, one decoder learns
the segmentation of the cdls, while the other decoder is learning the edge of the
cell. Once these two segmentations are obtained, the edge can be subtractad from
the cdl, yielding a result (m{x)), in-between those two segmentations. T his way,
one will get an optimum count of the cell, while still detecting the most correct
boundary of the cdll.

2. The Mask R-CNN (Recurrent Convolutional Neural Network) Ar-
chitecture

Mask R-CNN — Faster R-CNN + FCN
— _—~>Faster-RCNN

Figure 50: The Mask R-CNN Architecture using Instance Segmentation

A normal RCNN network proposes a bunch of bounding boxes (or region
proposals) in the image, and see if any of them correspond to an image, through a
process called sefective search. T his selective search looks at the image, through
windows of varying sizes, and for each imagetries to duster togetha adjacent pixes
based on texture, color, or intensity to identify different objects Then, R-CNN
warps the region to a standard square size, and passes it through the Recurrent
Convolutional Neural Network. In the final layer of the network, R-CNN adds a
Support Vector Machine (SVM), to dassify whether thisis an object, and if that is
the case, which object it is Asindicated above the Mask R-CNN takes this a step
further, by combining the Faster R-CNN (A modified R-CNN framework for better
parformance), plus a Fully Connected Network (FCN) [Science, 2017].T his allows
Ing ance Segmentation to come into play, by providing a pixel-wise mask for each
object intheimage. Thereason for thisisthat some bounding baxes may otherwise
overlap each other, and confuse the algorithm. The | nstance Segmentation and
bounding baxes are combined using a met hod called Rai Align. Using this approach,
R-CNN obtains both the pixel-wise locations, as well as the coordinates of the
bounding box of each object in the image, and ends up obtaining very precise
segmentations
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Considering the fact that the Mask R-CNN approach is based on Instance
Segmentation, which is used thoroughly in this project, it would be a natural
next step to go to at the current stage. The above architecture is often used
for self-driving cars, but in the example shown in Figure 50, it has been trained
on Instance Segmentation of humans (which pixels are humans, and how many
humans are there). Changing it to an Instance Segmentation of oysters instead
would only require a small modification to the framework.

5.1.3 Customize the camera further

As mentioned in previous sections, one of the larger obstacles for the project was
the effects of sun glare in the images. This can be avoided by installing a circular
polarized filter on the camera. If this could be done for the MicaSense RedEdge-MX
camera it would reduce a lot of the distortions seen, likely leading to a much better
segmentation of the oysters when submerged.
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6 Conclusion

The goal of the project has been two-fold. 1) To develop good Image Analysis-based
algorithms to segment the oysters from the background in the drone images, both
in the optical and multi-spectral regard, and give an estimate of the amount of
oysters present in each image frame. And 2) to demonstrate whether or not a
Micasense RedEdge-MX multi-spectral camera can out-compete a normal, optical
camera, for photography and subsequent segmentation and estimation of oysters
through the water surface.

Regarding the first objective, one Supervised Learning algorithm named the
Quadratic Maximum Likelihood classification was developed for segmentation of
oysters, as well as two Unsupervised Learning algorithms named the K-means
clustering, and the Gaussian Mixture Model. These three methods were tested
on various pictures and evaluated for their performance. Afterwards, a Semantic
Segmentation and an Instance Segmentation algorithm was developed for the same
purpose, which managed to give a good estimate of the number of oysters present
in an image, as long as the conditions of the environment were not too difficult.

To pursue the second objective, a payload consisting of both a multi-spectral
(Micasense RedEdge-MX) and an optical (Go-Pro) camera was built, and mounted
on a DJI M-600 drone. This drone was then brought to Nykgbing Mors in northern
Jutland, where several sets of images were captured above the oyster beds. The
images were captured simultaneously in each camera, under the same conditions,
allowing a good comparison between the cameras to be made. The images were
subsequently analysed with the earlier mentioned Image Analysis methods, to get
an estimate of the performance of both cameras. Interesting results were achieved
as seen in Figure 44 and Figure 45, which showed that oysters are highlighted and
stand out much more clearly in the green band of the MicaSense camera, especially
after computing a histogram equalization of the image. Unfortunately, the metal
quadrant present in the image also became much more bright, and was confused
by the algorithm as being multiple oysters as well. However, ignoring the points
directly on the quadrant and looking inside, the green band of the multi-spectral
camera seem to detect more oysters than in the Go-Pro version of the image. It
should be noted that the detection depends on the chosen value of sigma (standard
deviation of the Gaussian smoothing kernel), and that this value was different
between the two photos. Based on the results seen in Figure 45, it is clear, however,
that a multi-spectral camera holds potential for mapping underwater environments
like these, and may even out-compete a normal, optical camera, given the right
amount of post processing, the right value of gain and exposure time (ISO) of the
camera, and custom configurations (like installing a circular polarized filter).

Overall, the best approach to segmenting oysters would be to use the Gaussian
Mixture Model (see Figure 26) to get a good overview of what is going on in the
environment, followed by an Instance Segmentation with a user-set value of sigma,
found by trial and error, to segment and count the oysters in each image.
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Appendix

6.1 Elaboration of Measures of distance, Bayes Theorem
and the M ahalanobis distance

In machinelearning, the concept of dis-

tance and amilarity play a crudal role. 3
For example, if a computer learning al-
gorithm wants to differentiate between 2

apictureof acat and a dog, it will have
to compare the image to what a cat
and dog ought to look like One of the 0
most common waysto dothisiswith a
distance metric, which is a function of -1
two observations, x and y, such that its
value is large when they are evary dis-
similar and small when they are very
similar. In addition to this, it must -2 0 2 4
obey some further rules, which will not Figure 51: Simple 2D dataset toillustrate the
be covered here A common way to Mahd_anobis distance The !Vlahdmobis dis-
define this is with the magnitude of tanceis 13 between !he red points but only 4.15
- | baween the blue points
the difference of the observations, x -
y, called a norm in vector space. The
most common one of these is the well known euclidean norm, however, in this case,
we shall make use of the Mahalanal¥ s Disfanoe instead for amilarity measurement.
Suppose we are given a covariance matrix X, estimated from a dataset. Then the
Mahalanohis Distance can be defined as

1Jl
du(x, ¥)= (x-y) I (x-y) ]

Notice that if ¥ 9 the Mahalanobis Distance reduces to the Euclidean distance.
Roughly said, what the Mahalanobis Distance takes into account is that the
disance between two points should be loser when the points lie within the point
cloud of the dataset. For instance in figure 51, the distance between the two red
points according to the Mahalanobis disance is 13 but only 4.15 between the blue
points, however in both cases the Eudidean distance isroughly 565. Thisindicates
greater amilarity for the two blue points.

6.1.1 Basic probability theory in M achine Learning

Even though most people are familiar with probabilities, they are often confused
and intermingled with other concepts from statistics, and will therefore shortly be
introduced anew here. We will consider binary propositions such as A, B or C.
T he probability of something will be denoted with P, so that the probability that
Aistrue or that A and B are both true are written as



P(4) P(AB) 3)

Furthermore, the probability that A is true given C is true, or that A and B are
both true given C may be written as the conditional probability:

P(A|C) P(AB|C) (4)

All probabilities are numbers between 0 and 1, with P(A) = 0 corresponding to A
being false with 100% certainty and P(A) = 1 to A being true with 100% certainty.
Finally, there are only 2 important rules in probability theory:

The sum rule: P(AIC)+ P(AIC) =1

The product rule: P(AB|C) = P(BJAC)P(A|C),

with A denoting not A, i.e. A is not true.

6.1.2 Bayes Rule

Bayes rule is generally written as

_ P(BJA)P(4;)
PUAIB) = SRy PlAy K
Which in our case would become
" _ P(Xlwr)P(w")
P(wlX) >, P(X|w;) P(w;) Y

The left side of this equation is thus the probability of finding class w,, given an
observation X.

Then, using Bayes’ classifier, we would choose the maximum of P(w.|X), which is
known as MAP (maximizing the posterior (or a posteriori) probability).

6.1.3 The quadratic maximum likelihood classifier, L
The classifier that will be used is known as the quadratix maximum likelihood
classifier, ¢.(X):
1 1 Ty-1
1o(X) ~ 0P () = Sl - 5 (X - )T (X - ) (7)

where P(w,.) denotes the prior (a priori) probability, and the last term, 7%(X -
w,)TEH(X - p,) represents the Mahalanobis Distance.

6.1.4 K-means Algorithm Workflow

The K-means algorithm attempts to identify K clusters, using an euclidean distance-
, and center-based approach. It takes an arbitrary data set and then clusters the
data observations into K groups or clusters. A cluster in this context is thus
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defined as a group of observations where the distance between observations within
that cluster is smaller relative to the distance between observations outside of this
cluster. The approach is as follows for a chosen K amount of clusters.

e First, each py, (center of the cluster) is initialized at a random location.

e Then each of the observations in the feature space is assigned to the nearest
1, and now belongs to this cluster. The region belonging to each cluster is
often color coded.

e Then the location of each p, is updated to be the mean of the points assigned
to it.

e The two previous steps is repeated until the location of py doesn’t change
anymore.

While the K-means algorithm is a quite simple and efficient clustering algo-
rithm, it is sensitive to both outliers and also by simple scaling of one coordinate
while keeping the others fixed. In other words, it can only find round/circular clus-
ters. For this reason, one usually standardizes the data before using it. Secondly,
the cluster the K-means converges to may also depend on the initialization, making
it important to consider how to initialize the data. The K-means algorithm can
easily be implemented in Matlab using the function kmeans.

6.1.5 Gaussian Mixture Model workflow

The Gaussian Mixture Model is a good way to get around the limitations of the
K-means algorithm. It uses a density-estimating approach, with the goal to describe
the probability distribution that a given set of observations X has originated from.
So for every cluster, it is going to learn a Gaussian distribution that explains what
that cluster looks like. In general, the GMM model is more flexible than K-means,
as it has the ability to account for clusters of different shapes, and it also tells the
user how probable the data is, which will make it easier for the user to choose the
K amount of clusters. In addition to this, it is also much less sensitive to data
scaling.

The GMM model makes use of the multivariate normal distribution as a building
block to create a more flexible distribution. At first, clustering the images with 8
clusters returns a classified image that can be seen in Figure 26. Each image only
has 3 clusters, one for each channel of the RGB-spectrum.

1. Via Bayes’ rule: P(w|z;) = K - P(2;w.) P(w,) with £ = Zﬁl P(z;lw;)P(wj)
2. For GMM, one has that 11, = P(w.|2;) with £ 1 = 1.

3. Then calculate P(w.) = %Zﬁl i being the mixing proportion of a class
c, as well as i = P(wez;) where ¥ uye = 1, pe = m YN piex; and

Xe= ﬁ(wc Z{\il ﬂi6($i - /I’C)('ri - /LC)T

4. pe and Y. define P(z;|w.) which, together with P(w,.) via. Bayes’ rule gives a
new p;. = P(we|x;), which in turn yields a new P(w,): Iterate



5. Usage of the Expectation Maximum (EM) algorithm:
a. Calculate P(w.), tte, X
b. Calculate P(w,|z;) in Bayes’ rule

The final GMM model, with use of the EM algorithm, is defined as

N C
maz Y. Iny. P(we)P(Xi|w.) (8)

i=1 c=1

The GMM model can easily be implemented in Matlab using the fitgmdist and
posterior algorithm from the Machine Learning Toolbox, as was also illustrated in
Figure 25.
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picture depending on the characteristics and environment of each picture, and be
determined automatically by the algorithm. However, after thorough research, it
proved to be a more difficult task to implement than first assumed, and finally it

was deemed to be outside the scope of this project.

Another method that was at-
tempted was that of histogram match-
ing. By matching each new image to
the histogram of the reference image
(here, image No. 15, as illustrated in
Figure 46), and then smoothing the
new image according to the sigma value
that was the optimal choice for the ref-
erence image, this sigma value should
stay the same value, as it smoothes
according to one particular histogram,
and thus it should also be the optimal
choice for the new, matched images.

Figure 46: Reference image (image No. 15)

However, this proved not to be the case at all, and in fact, the matched histograms
would introduce distortion into the image, in the shape of white blobs, as is seen
illustrated in Figure 47 and in Figure 48, especially in the upper-right section of
the figure. These white blobs might be mistaken by the algorithm as oysters, which

would cause more damage than good.
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Figure 47: Histogram of the reference image (left), and before and after histogram of the image

in question (middle and right)



Appendix 3.2: Student report: Methods to estimate oyster coverage by using
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1 Introduction

The aim of this part of the project has been primarily testing different methods to estimate the oyster
coverage in the images captured from UAVs. Several different algorithms were tested to segment oyster
beds in the images. It was tested whether the methods optimal for detection of eelgrass will also be
optimal for oysters.

1.1 Previous Work

This work is a continuation of a report Automatic detection and estimation of submerged oysters from
drone images by Jonathan Gundorph. Whereas his work focused on the possibilities of very accurate
segmentation of every single oyster in the image, this work has been directed towards estimating the area
covered by oysters.

1.2 Supervised vs. Unsupervised learning

There is no doubt that using supervised learning, in particular Convolutional Neural Networks (CNN)
will be an interesting direction for the further research and algorithm development. However, taking into
consideration, the limited time and limited amount of data, it was decided to focus mostly on image
pre-processing and testing unsupervised learning algorithms (e.g Kmeans, Otsu) to identify difficulties
and influence of flight altitude, weather and light conditions.

1.3 Multispectral Camera

It has been tested that multispectral camera is not an optimal sensor for monitoring underwater environ-
ment. Longer wavelengths cannot penetrate the water surface. Figures [},  and [ shows the comparison
of the same image of an eelgrass bed taken by Micasense RedEdge in RGB, Band 4 and Band 5.

Figure 1:  Original Image,
Brondby, 40 m

Figure 2: Band 4 Figure 3: Band 5

1.4 Difficulties with identifying oysters

Segmenting oysters in images captured from above the water surface poses certain challenges. The
identified diffuclties include:
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e Sea surface
o Small contrast between background and oysters
« Different colors of oysters

o oysters covered by sand and algaes

1.5 Datasets

All the conclusions are based on a dataset collected in Lysen Bredning. Images were captured by DJI
Phantom flying on altitude of 10 and 15 meters. Images chosen for the tests were thought to represent
different environmental conditions. Figures [d] and [ show the sample images.

Figure 4: Sample Images captured at 10 m flight altitude



5172456 May 4, 2021

Figure 5: Sample images captured at 15 m flight altitude
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2 TImage Pre-Processing

It has been noticed that a very important part of working with images is pre-processing and trying to
erase the effect of light conditions and uneven water surface before segmentation. It was thought that
improving the contrast between oyster bed and its background as well as sharpening the edges should
improve the results.

2.1 Filtration in Frequency domain

Three main types of filters in frequency domain have been tested in the project:

o Low pass filter
o high pass filter

o mnotch filters

Frequency spectrum of an image can provide interesting information about the noise in the images.
It was hoped that the small roughness of the water surface in presence of wind will be visible in the
spectrum as a repetitive spectral noise, which can be erased by notch filters. The assumption proved
to be incorrect, which is shown in Figure ] The use of high pass filter stops the lower frequencies and
enhances the noise in the images, therefore it was not used in the further analysis. Low pass filter proves
to improve visibility underneath the water surface and significantly enhances contrast, which can be seen
in Figure [l On the other hand, as individual oysters are rather small, using lowpass filter might blur the
contours and decrease the segmentation.
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Original Spectrum Low pass spectrum

Figure 6: Image Spectrum

Low pass filter

Figure 7: Left: Original Image, Right: Filtered Image

2.2 Dehazing Algorithm

Dehazing algortihms are typically used to reduce atmospheric haze in an RGB image. It wasnoticed that
the water surface is smilar in its properties to the atmospheric haze as it reduces the contrast, blurs the
edges and makes the image seem “foggy’. The algorithm used in this project is based on a dark channd

6
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prior, which is based on the observation that unhazy images of outdoor scenes usually contain some pixds
that havelow sgna in ane or more cdor channds

Figures g and @ show the original and dehazed image. The improvement is very wel visible in Figure g

Figure 8: Left: Original Image, Right: Filtered Image

Figure 9: Left: Original Image, Right: Filtered Image
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3 Methodology

White oysters are much easier torecognize in the image than darker ones. Unfortunately, the devdoped
dlgorithms are able only to recogniz2 and segment white oysters coverage.

3.1 Color Spaces

QOysters has proven to be the most visible in Y CbCr cdor space. Working on the value of luminance
instead of intensities of gray increaes segmentation results

Figure 10 Originad Image, 15
m

Figure 11: Image in YCbCr Figure 12- Luminance band
cdor space

3.2 Canny Edge detection

Canny edge detection with further morphological operations has proven to be a promising method. It
does not segment all the oysters correctly, but it proves that edge and line detection algorithms might be
worth further investigation.

Figure 13: Left: Full size image, Right: Zoom in
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3.3 Otsu Binarization

Otsu algorithm is a simple algorithm which automatically finds a binarization threshadd based on the
histogram of the intensity of gray. It is very simple to use and it works wel for images where white
mussds are sgnificantly cutstanding in the image It was noticed that the algorithm fails in presence of
algaes. Figure [T shows the sample results using Otsu binarization agorithm.

Figure 14: Left: Original Image, Right: Binarized Image

3.4 Segmentation with K-means algorithm

Kmeans algorithm is commonly used for image segmentation. It is an unsupervised learning technique
which assigns the pixes to the cduster with the nearest mean. An advantage of using Kmeans is a
possibility to choose the number of dusters (therefore it can be used when other objects are captured
in the image) and ability to combine different channds (eg RGB with texture and saturation). Kmeans
algorithm hasaready been used in Jonathan’s report, however it wasthought that an attempt tominimize
the number of dusters and have more accurate results is needed.

Kmeans agorithm has been tested with both 2 and 3 dusters and the sample results are shown in
Figure T3

Figure 15 Left: 2 dusters, Right: 3 dusters
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4 Results

4.1 Influence of the flight altitude

In general, the higher the flight altitude, the less details are visible in the images, which might decrease
the segmentation results. Available datasets did not provide enough information to draw additional
conclusions, however based on the eelgrasss project, it is thought that single oysters might be even harder
to recognize if the flight altitude is higher than 40 meters.

4.2 Algaes

Algaes appear in the images either as a separate, dense object 7?7 or as smaller clumps partly covering
the oysters ??7. None of the algorithms have been successful in segmenting an algaes bed and oysters
beds in the same. Even though the dehazing algorithm increases the visibility of algaes quite significantly
(B), they still cannot be successfully distinguished from dark oysters. Figures and show Kmeans
segmentation results of luminance after dehazing the images. Oysters and light sand end up in the same
cluster, therefore it was thought that the solution might be a bigger number of clusters.

Dehazed Image

Figure 16: Left: Dehazed Image, 15 m, Right: Segmented Image

Dehazed Image

Figure 17: Left: Dehazed Image, 15 m, Right: Segmented Image
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Algorithm has worked very wel with dustering white oysters partly covered by algaes. It has to be
taken into account though that the calculated coverage area will be smaler as anly parts of the oysters
are visible However, it seems that it is not possible to estimate the coverage of oysters and algaes and
oysters at the same time as are covered by algaes has nat been segmented accuratdy. Figure [T8 shows
the Kmeans segmentation results of luminance on the dehazed image

Figure 18: Left: Dehazed Image, 15 m, Right: Segmented Image

4.3 Dense oysters’ beds

Dense beds are being segmented more accuratey than single oysters as the imsegkmeans algorithm in
Matlab takes intoaccount alsolocaization of the pixels. Both Otsu binarization and Kmeans segmentation
of luminance after dehazing seem to successfully duster oysters in Figures T9 and 200

Figure 19: Left: Original Image, 10 m, Right: Otsu binarization

1



s172456 May 4, 2021

Figure 20: Left: Original Image, 10 m, Right: Kmeans segmentation

4.4 Dark sand

Figure (1) shows an interesting result of Kmeans segmentation after dehazing in presence of the dark
sand. Light sand and oysters have been segmented to the same cluster.

Dehazed Image

Fosults of segmontation with luma kmeans segmentation and dehazing

Figure 21: Left: Original Image, 15 m, Right: Kmeans segmentation



5172456 May 4, 2021

5 Conclusions and Recommendations

Segmentation of oyster beds has proven to be challenging. Tested algorithms and pre-processing tech-
niques gives an indication what might be the direction of further research and which algorithms will not
yield satisfactory results.

Due to the fact that segmentation has proven to be dependent on the environmental changes (light and
weather conditions, surrounding vegetation) it is recommended to capture similar images in the same are
during different seasons.

Possible further pre-processing should focus on neutralizing different lighting conditions. It is thought
that Retinex algorithm might prove to be useful.

As for further development of segmentation algorithm, it is recommended to look into supervised
learning. It requires much more work to create and annotate a representative dataset, but we could
observe that certain characteristics of oysters (e.g similar values in saturation) are the same in different
images and might be used as an indication of oysters’ presence.

Moreover, good multispectral dataset needs to be acquired to test the possibilities of using e.g. NDVI
to segment oysters on the shore. It is thought that oysters being living organisms, might be recognizable
on the NDVI maps.

13



Appendix 4.1: Genetic tables

Glossary of terms used throughout the report, including the acronyms used.
Term Acronym Definition

Locus/Loci A general term to refer to a location
in the DNA
Single Nucleotide Polymorphism SNP A base pair (C, T, G, A) in the DNA

where there is variation within indi-
viduals of a population

Linkage Disequilibrium LD Non-random association of two loci
within the DNA, located or not
close-by

Wright's Fst Fst Levels of genetic differentiation be-

tween two populations. E.g. Fst=0,
no differentiation; Fst =1, two dis-
tinct isolated populations

Effective population size Ne The number of individuals reproduc-
ing/genetically contributing to the
next generation

Wright's Fis Fis Inbreeding coefficient of individuals
in relation to the subpopulation

Nei's Gst Gst Measure of differentiation between
population that is used to calculate
relative migration between them

Observed Heterozygosity He Proportion of heterozygous loci ob-
served in the DNA of an individual,
averaged per population

Allele richness AR The average number of variants per

marker




Table 1: Size measurements (leng

per location for the corresponding age/size class.

Location Size class Min. length (mm) Max. length (mm)

0 9.47 18.44
Agger Tange 1 50.6 74

3 120.74 168
Branden 1 20 60.12

3 130.01 195

0 8.19 38.8
Struer 2 100.23 102

3 121.27 143.02

0 23.72 35.35
Nykgbing Bugt 1 76.58 89.61

3 130 185

0 14.26 46.63
Sallingsund 1 66.75 118.95

3 130.92 165

0 14.95 36.96
Draby 1 40.39 68.54

3 140.29 189
Nissum 3 90.15 113.37
Logstor 2-3 94.86 139.39

4 142.2 153.99
Isefjord NA NA NA

1 70 95
Lysen offshore 2 105 145

3 150 195
Hals 1 50 95

2-3 100 135

0 30 45

1 50 65
Lysen 1-2 70 85

2-3 90 115

4 120 165

0 46.56 58.99
Netherlands 1 60.51 98.08

2 102.55 135.59
Sweden 1 60 90

0 21.37 35.99
Wadden Sea 0-1 36.82 49.92

1-2 70.27 89.58
Norway 1 85 99

2 100 172




Table 2: results of the relatedness analysis on the real data and simulated data for each sample location used for the study. Acronyms: Standard Deviation
SD); Standard Error (SE); Confidence Interval (Cl).

Location Type of data No. dryad (Real)‘Mean Relatedness, SD Median SE |Mean Relatedness Cl Mean Cl 25%|Mean Cl 97.5%
Agger Tange Real 5253 -0.0104 0.1408 | -0.0206 | 0.0019 -0.0019 -0.2704 0.2665
Branden Real 5050 -0.0103 0.1365 | -0.0175 | 0.0019 -0.0021 -0.2615 0.2572
Draby Real 2278 -0.0155 0.1327 | -0.0192 | 0.0028 -0.0073 -0.2658 0.2511
Hals Real 1891 -0.0171 0.1384 | -0.0239 | 0.0032 -0.0095 -0.2719 0.2530
Isefjord Real 378 -0.0393 0.1407 | -0.0492 | 0.0072 -0.0305 -0.3023 0.2413
Sallingsund Real 2628 -0.0145 0.1415 | -0.0233 | 0.0028 -0.0064 -0.2749 0.2621
Lggster Real 780 -0.0270 0.1441 | -0.0364 | 0.0052 -0.0202 -0.2945 0.2542
Lysen Real 6903 -0.0088 0.1407 | -0.0161 | 0.0017 -0.0007 -0.2655 0.2641
Lysen Offshore Real 1378 -0.0198 0.1418 | -0.0293 | 0.0038 -0.0124 -0.2702 0.2454
Netherlands Real 1128 -0.0224 0.1368 | -0.0307 | 0.0041 -0.0092 -0.2747 0.2563
Nissum Real 1711 -0.0180 0.1385 | -0.0237 | 0.0033 -0.0510 -0.3109 0.2090
Norway Real 153 -0.0626 0.1206 | -0.0746 | 0.0098 -0.0127 -0.2754 0.2500
Nykgbing Bugt Real 1830 -0.0170 0.1452 | -0.0224 | 0.0034 -0.0107 -0.2853 0.2639
Struer Real 3828 -0.0122 0.1423 | -0.0147 | 0.0023 -0.0049 -0.2799 0.2701
Sweden Real 1128 -0.0227 0.1387 | -0.0266 | 0.0041 -0.0139 -0.2855 0.2577
Wadden Sea Real 8646 -0.0080 0.1388 | -0.0185 | 0.0015 -0.0001 -0.2654 0.2651
Agger Tange | Simulations 499500 -0.0010 0.1307 | -0.0079 | 0.0002 0.0057 -0.2424 0.2539
Branden Simulations 499500 -0.0010 0.1294 | -0.0082 | 0.0002 0.0062 -0.2402 0.2526
Draby Simulations 499500 -0.0010 0.1292 | -0.0089 | 0.0002 0.0062 -0.2399 0.2523
Hals Simulations 499500 -0.0010 0.1318 | -0.0077 | 0.0002 0.0050 -0.2469 0.2569
Isefjord Simulations 499500 -0.0010 0.1375 | -0.0079 | 0.0002 0.0054 -0.2561 0.2669
Sallingsund | Simulations 499500 -0.0010 0.1338 | -0.0077 | 0.0002 0.0053 -0.2501 0.2607
Laggstar Simulations 499500 -0.0010 0.1362 | -0.0070 | 0.0002 0.0046 -0.2540 0.2633




Lysen Simulations 499500 -0.0010 0.1310 | -0.0073 | 0.0002 0.0053 -0.2449 0.2555
Lysen Offshore| Simulations 499500 -0.0010 0.1303 | -0.0085 | 0.0002 0.0068 -0.2394 0.2530
Netherlands | Simulations 499500 -0.0010 0.1308 | -0.0090 | 0.0002 0.0061 -0.2423 0.2545
Nissum Simulations 499500 -0.0010 0.1396 | -0.0108 | 0.0002 0.0058 -0.2494 0.2611
Norway Simulations 499500 -0.0010 0.1324 | -0.0077 | 0.0002 0.0055 -0.2466 0.2577
Nykgbing Bugt| Simulations 499500 -0.0010 0.1355 | -0.0065 | 0.0002 0.0044 -0.2543 0.2631
Struer Simulations 499500 -0.0010 0.1336 | -0.0077 | 0.0002 0.0048 -0.2503 0.2599
Sweden Simulations 499500 -0.0010 0.1326 | -0.0076 | 0.0002 0.0054 -0.2464 0.2573
Wadden Sea | Simulations 499500 -0.0010 0.1287 | -0.0096 | 0.0002 0.0065 -0.2377 0.2508




Appendix 7.1: Stakeholder interview questions

Name of company: Interview date:

Name of person interviewed: Interviewed by phone by:

Questions for fishers that gave up gigas fishery

1)
2)
3)
4)
5)
6)
7)

8)

Hvorfor er du holdt op med at fiske stillehavsgsters?

Har du gjort dig nogle positive erfaringer med fiskeri af stillehavsgsters?

Hvemn afsatte du dine stillehavsgsters til?

Var kvaliteten og mangden af stillehavsgstersene tilfredsstillende?

Hvilke omrader fisker du hovedsageligt i og p3 hvilke vanddybder?

Hvilket redskab og hvor mange ad gange bruger du?

Overvejer du at ans@ge om fiskeri af stillehavsgsters igen = hvorfor/hvorfor ikke?

Er der nogle forhold som skal andres fgr du vil overveje at ansgge om fiskeri af
stillehavs@sters igen?



Mame of company: Interview date:

Mame of person interviewed: Interviewed by phone by:

Questions for fishers currently fishing and lands gigas.

1)
2)
3)
a)
5)
6)
7)
8)

9

Hvad er jeres hidtidige erfaringer med fiskeri af stillehavsgsters?

Hvad fungerer godt og hvorfor?

Hvad fungerer mindre godt, hvor kan forholdene forbedres?

Hvern afsaetter du dine stillehavsgsters til?

Hvardan er kvaliteten af stillehavsgstersene?

Hvilke omrider fisker du hovedsageligt | og pa hvilke vanddybder?

Hvilket redskab og hvor mange ad gange bruger du?

Hvordan ser du fremtidsmulighederne for udvikling af stillehavsgstersfiskeri? Er der nogle.

Hvor vigtigt er stillehavsgsters for dit fiskeri?



Mame of company: Interview date:

Mame of person interviewed: Interviewed by phone by:

Questions for industry/traders

1) Hwvad er jeres hidtidige erfaringer fra salg og forarbejdning af stillehavsasters?

2) Hvem kaber | stillehavsgsters fra?

3) Hvad fungerer godt og hworfor?

4) Hvad fungerer mindre godt, hvor forholdene forbedres?

5) Hvor afsapttes stillehavsgstersene til? Og hwilke produkter afsaettes?

B) Hwvor store maengder afsaetter | rligt? Og er der nogen begraensninger for jeres salg?
7) Hwvordan er kvaliteten og priserne for stillehavsgsters?

8) Hvordan ser | fremtidsmulighederne for udvikling af stillehavsgstersfiskeri og er der nogen
fordringer?

9) Hwvor vigtigt er stillehavsgsters for jeres virksomhed — indtaegt, brand etc.?

10) Hvad er jeres erfaringer i forhold til depoter — overlevelse og kvalitet?



Appendix 8.1: Tables mini-dredge assessment

Table 1. Mini-dredge mean catch by weight (g/m? dredged £SE, N=18) in the dense and offshore areas. * Total by-catch is only live organisms, excluding rocks and

shells.

Total Catch/Bio-

mass Pacific Oysters By-catch

(g/m? +SE) (g/m? +SE) (g/m? +SE)
Catch Live Dead Total* Vertebrates Bivalves Invertebrates Algae Shells
Dense 1579 (+140) 118.7 (£21.7) - 19.9 (£3.6) 0.02(+0.07) 6.0 (£1.0) 2.1 (20.4) 11.9 (#2.7) 1 072.5 (x157.4)
Offshore 822 (+x109) 479.1 (¥94.4) - 61.1 (£8.6) 0 37.5(¥5.4) 0.6 (x0.2) 23.1 (#4.3) 47.9 (x19.5)

Table 2. Mini-dredge mean catch (humber/m? dredged +SE, N = 18) in the dense and offshore areas.

Pacific Oysters By-catch
(number/m? +SE) (number/m? +SE)
Weight (g)
Catch Live Dead Ind. Clumps per oyster Vertebrates Bivalves Invertebrates Algae Shells
Dense 0.86 (+0.1) 10.8 (¢1.3) 0.58 (+0.1) 0.28 (x0.1) 145.7 (+12.7) 0.004 (+0.004) 4.8 (£0.9) 0.9 (0.2) - -

Offshore  2.08 (+0.4) 0.2 (x0.1) 1.41(x0.2) 0.67 (x0.2) 216.5 (+8.1) 0 3.0 (£0.4) 0.1 (0.1) - -




Table 3. Quadrat samples: Species richness (S, number of species), abundance (number of individ-
uals), Shannon’s diversity (H) and evenness (E) indices. A total of 6 species were identified, 5 in
the dense population and 6 in the offshore population. Abundance was higher at the dense (N =
481) than at the offshore population (N = 67).

Quadrat Site | Population | Treatment [ S [N | H E

-2 Dense Impact 2 | 13 ] 0.271189

1-3 Dense Impact 1111

1-6 Dense Impact 2 |7 |0.59827 | 0.863121
1-8 Dense Impact 3 | 33 | 0.645196 | 0.587283
1-10 Dense Impact 3 | 18 | 0.854415 | 0.777722
1-12 Dense Impact 3 0.535961 | 0.487853
1-13 Dense Impact 1

114 Dense | Impact |3
1-15 Dense Impact 2

C-19 Dense Control 3 | 53 | 0.645325 | 0.5874

C-20 Dense Control 3 | 27 | 0.683739 | 0.622366
C-21 Dense Control 3 | 11 | 0.93477 | 0.850864
C-22 Dense Control 2 | 30 | 0.610864 | 0.881291
C-23 Dense Control 2 | 23 | 0.178845

C-24 Dense Control 3 | 13 | 0.858741 | 0.78166
C-25 Dense Control 3 | 27 | 0.914622 | 0.832525
C-26 Dense Control 1

Cc-27 Dense Control 0.821256 | 0.592411
C-28 Offshore Control 0.562335 | 0.811278
C-29 Offshore Control

C-30 Offshore Control

C-31 Offshore Control

C-32 Offshore Control

C-33 Offshore Control

C-34 Offshore Control

C-35 Offshore Control

C-36 Offshore Control

1-37 Offshore Impact

1-38 Offshore Impact

-39 Offshore Impact

1-40 Offshore Impact

1-41 Offshore Impact

1-42 Offshore Impact

1-43 Offshore Impact
1-44 Offshore Impact

1-45 Offshore Impact 4 | 0.754997 | 0.544615




Table 4. Quadrat samples: Species richness (S, number of species), abundance (number of individ-
uals), Shannon’s diversity (H) and evenness (E) indices. A total of 55 species were identified, 44 in
in the reef/dense population and 39 in the offshore population. Abundance was higher at the
reef/dense (N = 3279) than at the offshore population (N = 787).

Core Site | Population Treatment | S | N H E

Site 01 Reef=Dense | Impact 19 | 164 | 2.393919 | 0.813031
Site 04 Reef=Dense | Impact 14 | 142 | 2.084983 | 0.790048
Site 05 Reef=Dense | Impact 12 | 86 | 1.972851 | 0.793934
Site 07 Reef=Dense | Impact 14 | 96 | 2.175183 | 0.824227
Site 09 Reef=Dense | Impact 14 | 195 | 2.046378 | 0.77542
Site 11 Reef=Dense | Impact 13 | 108 | 2.179207 | 0.84961
Site 16 Reef=Dense | Impact 17 | 115 | 2.268109 | 0.800543
Site 17 Reef=Dense | Impact 11| 94 | 1.887749 | 0.787253
Site 18 Reef=Dense | Impact 17 | 161 | 2.155846 | 0.760919
Site 43 Reef=Dense | Control 16 | 223 | 2.016901 | 0.727443
Site 46 Reef=Dense | Control 15 | 201 | 1.956279 | 0.722394
Site 47 Reef=Dense | Control 17 | 189 | 2.428579 | 0.857182
Site 50 Reef=Dense | Control 17 | 233 | 1.765946 | 0.623302
Site 50b | Reef=Dense | Control 18 | 85 | 2.38499 | 0.82515
Site 51 Reef=Dense | Control 18 | 206 | 2.004137 | 0.693384
Site 52 Reef=Dense | Control 17 | 262 | 2.035871 | 0.718573
Site 53 Reef=Dense | Control 14 | 163 | 1.99881 | 0.757396
Site 54 Reef=Dense | Control 20 | 556 | 1.874846 | 0.625839

Site 55 Offshore Control 11 [ 79 1.956851 | 0.81607
Site 56 Offshore Control 6 |37 1.463133 | 0.81659
Site 57 Offshore Control 15 | 48 | 2.449985 | 0.904705
Site 58 Offshore Control 9 |31 1.920454 | 0.874036
Site 59 Offshore Control 9 [ 26 | 2.118272 | 0.964067
Site 60 Offshore Control 6 | 40 | 0.854253 | 0.476767
Site 61 Offshore Control 14 | 134 | 1.521575 | 0.57656
Site 62 Offshore Control 12 | 71 1.923498 | 0.774073
Site 63 Offshore Control 10 | 26 1.957888 | 0.8503
Site 64 Offshore Impact 8 [ 16 | 1.808046 | 0.869486
Site 65 Offshore Impact 9 19 | 2.068885 | 0.94159
Site 66 Offshore Impact 9 [ 22 | 1.893284 | 0.861671
Site 67 Offshore Impact 8 |28 | 1.807682 | 0.869311
Site 68 Offshore Impact 13 | 41 2.121785 | 0.827223
Site 69 Offshore Impact 8 |22 1.873965 | 0.901186
Site 70 Offshore Impact 10 | 29 | 2.087942 | 0.906782
Site 71 Offshore Impact 16 | 91 2.306529 | 0.831904

Site 72 Offshore Impact 9 [ 27 | 1.951529 | 0.888179




Appendix 8.2: Tables floating escavator assessment

Table 1. Excavator catches by weight (kg/m? or g/m? £SE, N=3) in the low, medium and high-density areas. * Total by-catch is only live organisms, excluding rocks

and shells.
Total Catch Pacific Oysters By-catch Shells Stones
(kg/m?) (kg/m?) (g/m? +SE) (kg/m?)  (kg/m?)
Other

Density Live Dead Total* Fish Bivalves Invertebrates Algae

Low 9.4 0.45 413 40 1.4 8.1 7.0 23.7 2.3 1.9
(x2.6) (x0.2) (x1.1) (£3) (x0.8) (x0.4) (£3.1) (x11.8) (x0.4) (x1.6)

Medium 33.9 0.41 9.17 ( 1,565 0.7 7.2 140.5 1,374 8,7 15.4
(x1.7) (x0.1) +2.1) (£661) (+0.5) (x0.7) (£90.6) (£579) (27.5) (£7.7)

High 57.1 7.31 20.53 4,318 4.4 231 765.9 3,227 50.7 0.1
(£3.7) (+2.9) (£1.7) (£916) (+0.4) (£144) (£198.8) (+628) (£3.3) (+0.1)

Table 2. Excavator catches by number (number/m? +SE, N=3) in the low, medium and high density areas. * Total by-catch is only live organisms, excluding rocks

and shells.

Pacific Oysters By-catch
(kg/m?) (g/m? +SE)
Other
Density Live Dead Total* Fish Bivalves Invertebrates
Low 277 3.8 0.33 0.78 2.67
(£1.25) (£1.6) (0.19)  (x0.44) (£1.17)
. 2.44 116.7 341 0.67 7.23 26.24
Medium
(x0.29) (£22.4) (x14.1) (x0.51)  (x0.72) (£13.92)
High 28.33 170.2 160.4 4.42 5.25 142.2
(£7.06) (+38.7) (+41.1) (£0.42)  (£3.12) (+40.28)




Table 3. Excavator catches: Species richness (S, number of species), abundance (number of individu-
als/m?), Shannon’s diversity (H) and evenness (E) indices. A total of 13 species were identified. Abun-
dance was higher at the high than in medium and low density areas (N = 566, 110, and 20, respectively).

Plot | Density | Treatment | Time S |N H E

H4 | High Impact Before | 7 | 248 | 1.18 | 0.61
H5 | High Impact Before | 5 | 96 | 1.13 | 0.70
H6 | High Impact Before | 7 | 223 | 1.21 | 0.62
M7 | Medium | Impact Before | 5 |23 | 1.29 | 0.80
M8 | Medium | Impact Before | 5 |65 |[0.79 049
M9 | Medium | Impact Before | 8 |22 | 1.44 | 0.69
L1 Low Impact Before | 5 |9 1.32 | 0.82
L2 | Low Impact Before | 10 | 12 | 1.80 | 0.78
L3 | Low Impact Before [4 || 3 1.21 | 0.88




Table 4. Control sites before impact: Species richness (S, number of species), abundance (number of in-
dividuals/m?), Shannon’s diversity (H) and evenness (E) indices. A total of 6 species were identified.
Abundance was higher at the high and medium densities (N = 992 and 848, respectively) than at the low
density area (N = 48).

Plot | Density | Treatment | Time

CH1 | High Control Before
CH1 | High Control Before
CH2 | High Control Before
CH2 | High Control Before

CH3 | High Control Before

CH3 | High Control Before

CH4 | High Control Before n

CH4 | High Control Before

CM1 | Medium | Control Before

CM1 | Medium | Control Before

CM2 | Medium | Control Before u

CM2 | Medium | Control Before
CM3 | Medium | Control Before um
CM3 | Medium | Control Before
CM4 | Medium | Control Before
CM4 | Medium | Control Before
CL1 | Low Control Before
CL1 | Low Control Before
CL2 | Low Control Before
CL2 | Low Control Before
CL3 | Low Control Before
CL3 | Low Control Before
CL4 | Low Control Before
CL4 | Low Control Before




Table 5. Control and impact sites 22 moths after impact: Species richness (S, number of species), abun-
dance (number of individuals/m?), Shannon’s diversity (H) and evenness (E) indices. A total of 16 species
were identified. Abundance was higher at the control sites (N = 2800 and 1184) than at the impact sites (N
=768 and 400), except for low density areas due to the high abundance of amphipods (N = 1872) that ac-
counted for 80% of abundance in impact sites (N = 2336) but onl

y 56% (N = 512) in control sites (N = 912).

Plot Density Treatment | Time S N Shannon | Eveness
CH1 High Control After 6 256 1.440235 | 0.80381

CH1 High Control After 5 288 1.541833 | 0.957995
CH2 High Control After 6 384 1.365307 | 0.761992
CH2 High Control After 800 1.496298 | 0.680995
CH3 High Control After 0.790637
CH3 High Control After 0.729337
H4 High Impact After 240 0.953271 | 0.68764

H4 High Impact After 0.409459 | 0.372705
H5 High Impact After

H5 High Impact After

H6 High Impact After 5 96 1.262084 | 0.784177
H6 High Impact After 2 80 0.500402 | 0.721928
CM1 Medium Control After 4 256 1.143275 | 0.824699
CM1 Medium Control After 3 96 0.867563 | 0.78969

CM2 Medium Control After 5 256 0.908909 | 0.564737
CM2 Medium Control After 2 208 0.690186

CM3 Medium Control After 6 272 0.972745
CM3 Medium Control After 2 96 0.693147

M7 Medium Impact After 2 64 0.562335 | 0.811278
M7 Medium Impact After 2 0.257319 | 0.371232
M8 Medium Impact After

M8 Medium Impact After

M9 Medium Impact After

M9 Medium Impact After

CL1 Low Control After 0.811278
CL1 Low Control After

CL2 Low Control After 0.393976
CL2 Low Control After

CL3 Low Control After

CL3 Low Control After

L1 Low Impact After

L1 Low Impact After 1

L2 Low Impact After 4 784 0.15885

L2 Low Impact After 2 0.251772 | 0.363231
L3 Low Impact After 4 0.546741 | 0.39439

L3 Low Impact After 6




Table 6. SIMPER dissimilarity analyses at control sites before and 22 months after impact in high (top),

medium (middle) and low density areas (bottom).

Overall Average Dissimilarity: 79.03 Mean
Taxon Av. dissim | Contrib. % | Cumulative % | Mean After | Before
Worms 12.04 15.23 15.23 3.94 0

M. edulis 10.82 13.7 28.92 4.56 1.36
C. gigas 10.27 13 41.92 3.92 0.841
L. littorea 10.04 12.71 54.63 3.93 1.95
Palaemon sp. or C. crangon 6.858 8.677 63.31 2.48 0
Pomatoschistus minutus 6.167 7.803 71.11 2.22 0

C. fornicata 5.212 6.595 77.71 1.59 1.41
N. reticulata 4.201 5.315 83.02 1.12 0.874
Isopoda 2.819 3.566 86.59 0.944 0
Metridium senile 2.23 2.822 89.41 0.944 0

C. maenas 2.031 2.57 91.98 0.583 0.437
Amphipoda 1.86 2.354 94.33 0.788 0
Patella vulgata/T testudinalis 1.134 1.435 95.77 0.472 0

M. arenaria 1.115 1.411 97.18 0.472 0

H. panicea 1.115 1.411 98.59 0.472 0
Leptochiton sp. 1.115 1.411 100 0.472 0
Overall Average Dissimilarity: 77.28 Mean
Taxon Av. dissim | Contrib. % | Cumulative % | Mean After | Before
L. littorea 19.99 25.87 25.87 4.36 24
Worms 19.9 25.75 51.61 2.96 0

M. edulis 11.06 14.3 65.92 1.75 0.959
C. gigas 10.45 13.52 79.44 1.89 0
Pomatoschistus minutus 4.309 5.575 85.01 0.944 0

N. reticulata 3.898 5.043 90.05 0 0.841
Amphipoda 3.525 4.561 94.61 0.847 0

C. fornicata 2.197 2.843 97.46 0 0.591
M. arenaria 1.965 2.543 100 0.472 0
Overall Average Dissimilarity: 99.58 Mean
Taxon Av. dissim | Contrib. % | Cumulative % | Mean After | Before
Amphipoda 47.46 47.67 47.67 2.75 0

L. littorea 21.36 21.45 69.12 1.37 0
Worms 8.653 8.69 77.81 0.762 0

C. gigas 7.535 7.567 85.38 0 0.708
M. edulis 4.77 4.79 90.17 0.472 0.354
Palaemon sp or C. crangon 3.174 3.187 93.35 0.732 0
Pomatoschistus minutus 2.525 2.536 95.89 0.583 0

C. maenas 2.046 2.055 97.95 0.472 0
Isopoda 2.046 2.055 100 0.472 0




Table 7. SIMPER dissimilarity analyses 22 months after excavator impact between control and impact sites in
high (top), medium (middle) and low density areas (bottom).

Overall Average Dissimilarity: 73.03

Taxon Av. dissim | Contrib. % Cumulative % Mean Control Mean Impact
M. edulis 11.64 15.94 15.94 4.56 0.472
Worms 10.01 13.7 29.64 3.94 0.472
C gigas 8.802 12.05 41.7 3.92 0.944
L. littorea 6.985 9.565 51.26 3.93 3.06
Palaemon sp. or C. crangon 6.119 8.379 59.64 2.48 0.472
Pomatoschistus minutus 5.745 7.868 67.51 2.22 0

N. reticulata 5.089 6.968 74.48 1.12 1.77
C. fornicata 4.065 5.566 80.04 1.59 0
Isopoda 3.004 4.113 84.16 0.944 0.472
C. maenas 2.337 3.2 87.36 0.583 0.472
Metridium senile 2111 2.891 90.25 0.944 0
Amphipoda 1.761 2412 92.66 0.788 0

C. edule 1.119 1.533 94.19 0 0.472
Patella vulgata/T testudinalis 1.073 1.469 95.66 0.472 0

M. arenaria 1.056 1.446 97.11 0.472 0

H. panicea 1.056 1.446 98.55 0.472 0
Leptochiton sp. 1.056 1.445 100 0.472 0

Overall Average Dissimilarity: 67.25

Av. dissim

Contrib. %

Cumulative %

Mean Control

Mean Impact

Overall Average Dissimilarity: 73.69

Taxon

Av. dissim

Contrib. %

Cumulative %

Mean Control

Worms 17.58 26.14 26.14 2.96 0.472
L. littorea 14.24 21.18 47.32 4.36 2.74
C. gigas 10.21 15.19 62.5 1.89 0

M. edulis 10 14.87 77.38 1.75 0
Pomatoschistus minutus 4.268 6.347 83.72 0.944 0
Amphipoda 3.504 5.211 88.93 0.847 0
Isopoda 3.183 4.733 93.67 0 0.472
C. edule 2.306 3.428 97.09 0 0.472
M. arenaria 1.954 2.905 100 0.472 0

Mean Impact

Amphipoda 23.89 3242 3242 2.75 3.93
L. littorea 14.28 19.38 51.8 1.37 0.829
Worms 8.571 11.63 63.43 0.762 1.32
Pomatoschistus minutus 8.498 11.53 74.97 0.583 1.64
Isopoda 6.362 8.633 83.6 0.472 1.42
Palaemon sp. or C. crangon 5.671 7.696 91.29 0.732 1.05
C. maenas 3.307 4.488 95.78 0.472 0.472
H. panicea 1.612 2.188 97.97 0 0.472
M. edulis 1.496 2.03 100 0.472 0

C. gigas 0 0 100 0 0




Appendix 9.1: Gastronomic possibilities of large Pacific oysters

Authors: Katla Hrund Bjérnsdéttir and Roberto Flore from DTU SkylLab FoodLab

DTU Skylab

Several experiments were conducted both regarding opening and cooking large wild pacific oysters
(C. gigas) (Figure 1) at DTU Skylab’s FoodLab in March and April of 2019. The over-all conclusion of
the experiments was that by freezing the large oysters in the shell they are easily opened with con-
ventional shucking methods. Since the large oysters are not eaten raw or whole, freezing them did not
cause a negative effect on the texture, although more research needs to be done here. The larger in-
dividuals contained algae in their digestive system which gave them an unpleasant look and texture
for eating raw, but the algae gave the oysters a sweet fresh flavor that could be desirable in food addi-
tives and/or distilled beverages. Further research is needed to optimize recipes and pathogen re-
search needs to be conducted.
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Figure 1 An example of oyster clusters used in the experiments. To the left and right side of the photos,
in centre an oyster of a size commonly served raw.

The oysters were delivered to DTU Skylab on 22.03.19, alive and cooled in a closed foam box with
wet paper to keep humid. All experiments, aside from the opening of fresh oysters, were performed
with oysters that had previously been frozen un-shucked, thawed in a refrigerator at 5°C over night,
shucked and cleaned at the same day as experiments were started.

Opening of fresh live oysters

At the same day as the oysters were delivered to Skylab an experiment was made on opening the
oysters using a table vice and shucking knife. By applying pressure on the ventral and dorsal parts of
the oyster it was possible to force the shell open enough to then use traditional shucking methods
(Figure 2). This method however fractured and grinded the shell causing parts of the shell to get into
the oyster which was difficult to clean out.
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Figure 2 A vice pressuring the ventral and dorsal parts of a single oyster in a cluster for opening.

Cooking whole un-processed oysters

Un-shucked oysters were steamed in a vacuum closed bag for 8 minutes at 80°C. After steaming the
oysters were immediately shucked and tasted for flavour and consistency. The taste of the plane
meat was sweet with a strong algae flavour.

The oysters had many algae in their digesting system (Figure 3), which gave them an unpleasant look
and consistency.

Figure 3 Algae in the digestion system of the oysters after cooking.

Cooking marinated whole oysters

Oysters were poached in a vacuum sealed bag at 80 °C for 3 minutes, immediately cooled down in an
ice bath and marinated with a 4% marinade (6% sugar + 2.5% salt + 1.5% citric acid) for 30 minutes
5°C. They were then dehydrated at 45°C for 3.5 hours and then roasted at 130°C for 10 minutes.

The flavour was sweet but as with the un-processed oysters their digestive system was full of algae
giving a large section of the oyster an unpleasing look and consistency for presentation (Figure 3).

Freeze drying



Four frozen oysters were freeze dried using BUCHI Lyovapor® L-200 and grinded to powder using a
thermomixer from Vorwerk® (Figure 4)

Figure 4 Freeze dried oysters after grinding.

Drying whole oysters

Both plain oysters and oysters marinated with 4% marinade for 30 minutes and over-night at 5°C and,
with 8% and 12% marinade for 30 minutes at 5°C and dried at 75°C for 24 hours using Excalibur®
Food Dehydrator. The total weight loss of the oysters was then calculated (Table 1). After drying they
were grinded to powder using a thermomixer from Vorwerk® (Figure 5).

Figure 5 The powders made from drying and grinding the oysters to powder. From the left: freeze dried,
plain, 4% marinade, 8% marinade, & 12% marinade

Table 1 Weight loss of whole oysters from drying.

Method Start weight Final weight Weight loss %
Plain 1 305 415 88.5
Plain 2 240 35 85.4
4% marinating 295 52 82.4
4% marinating over night 246 43.5 82.3
8% marinating 304 57 81.3
12% marinating 295 59.5 79.8

Average 280.8 48.1 83.3



Drying minced oysters

Oysters were minced using a Dynamic® master whisk and spread in a plastic container with three dif-
ferent thickness layers and dried overnight at 75°C and the total weight loss of the oysters calculated
(Table 2). The final texture was a crisp plate of minced oysters (Figure 6).

Figure 6 Dried, minced oysters.

Table 2 Weight loss of minced oysters from drying.

Method Start weight Final weight Weight loss %
200 26

Plain #1 87.0
Plain#2  300.5 39.5 86.9
Plain #3 350 44 87.4
Average 283.5 36.5 871

Distilling oyster alcohol

Approx. 100 gr of oysters, both whole and minced, were placed in a separate 500 mL 45% alcohol so-
lution at 5°C for 48 hours. After the 48 hours the alcohol was distilled using BUCHI Rotavapor® R-300
rotary evaporator. The final solution where the whole oysters were used had a distinct salt-ocean fla-
vour whereas the solutions from the minced oysters had a distinct algae flavour.



	Appendix 2.1: Monitoring and distribution of Pacific oysters in the Limfjorden and Isefjord
	Appendix 3.2: Student report: Methods to estimate oyster coverage by using different algorithms
	Appendix 4.1: Genetic tables
	Appendix 7.1: Stakeholder interview questions
	Appendix 8.1: Tables mini-dredge assessment
	Appendix 8.2: Tables floating escavator assessment
	Appendix 9.1: Gastronomic possibilities of large Pacific oysters

