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Preface 

This report presents the work on discard survival of undersized European plaice (Pleuronectes 
platessa) in towed fishing gears conducted at DTU Aqua in 2016-2018 and 2020-2023. The work was 
conducted in a project titled “Caught and released: an Overview of fishes’ sensitivity to being dis-
carded as a tool to aid Pursuing Ecosystem-based management (COPE)” coordinated by Dr. Junita 
D. Karlsen and its follow-up project “COPE 2” coordinated by Dr. Esther Savina. Both projects were
funded by the European Maritime and Fisheries Fund (grant no. 33113-B-16-086 and grant no.
33113-B-20-162, respectively). The projects were based on interest from managers in the Ministry for
Food, Agriculture and Fisheries and the Danish Fishermen Producer Organisation (DFPO) to explore
the opportunities to seek high survival exemptions from the landing obligation as detailed in the Euro-
pean Common Fisheries Policy, and to collect the associated scientific evidence required.

While the COPE project operated in Skagerrak with the aim of obtaining high survival exemption for 
the North Sea, Skagerrak, and Kattegat areas, the COPE2 project operated in the Baltic Sea to pro-
vide discard survival estimates for the Western Baltic Sea where Danish fishers operate. 

Discard survival is highly variable due to the species’ different resilience to stressors and stressor 
combinations, in addition to differences between and within fisheries as well as fleet segments. Both 
projects have therefore focused on understanding which operational, environmental, and biological 
factors affect discard survival most in Danish waters. In COPE, the focus was on differences in dis-
card survival between fisheries (gear type, target species, gear design, fishing season), and how air 
exposure affected survival estimates. In COPE2, additional focus was given on the effect of oxygen 
and temperature conditions and the physical impact of ingested hard-shelled prey items. 

Direct observation of survival in captivity is resource demanding. In contrast, proxies for discard sur-
vival, for example vitality, are easier and cost-efficient to collect. Proxies of discard survival have fur-
thermore the potential of giving estimates that cover a broader range of operational, environmental, 
and biological conditions compared with estimates from direct observations of fish in captivity. In 
COPE, it was however proven difficult to obtain good predictions of discard survival using established 
proxies which indicates that important processes influencing discard survival are not well understood. 
For this reason, attention was given in COPE2 to develop an optimized proxy to improve discard sur-
vival predictability, and to evaluate the proxy methodology for future improvements. 

This report is primarily meant for the managers involved in seeking high survival exemptions through 
the Regional Group Joint Recommendations; DFPO, to identify fisheries-and-species combinations 
for which high survival exemptions can be relevant; fishers who are interested in optimizing their fish-
ing and catch handling processes to improve the survival of their bycatch in fisheries relevant for high 
survival exemptions; and for scientists to inform future discard survival studies and contribute to the 
understanding of factors affecting discard survival estimates. 

Both the COPE and COPE2 projects were conducted in collaboration with the DFPO, who was in-
volved in the selection of the species and fisheries to be investigated and facilitated the identification 
and collaboration with the fishing vessels involved in the experiments. DFPO has neither been in-
volved in the scientific work or its outcome, nor has participated in making this report or had any influ-
ence on its content. The experiments that led to discard survival estimates were performed under the 
animal welfare approval no. 2020-15-0201-00668 and conducted according to the International Coun-
cil for the Exploration of the Sea (ICES) Guidelines on Methods for Estimating Discard Survival. The 
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responsible researchers were members of the ICES expert groups Workshop and Working Group on 
Methods for Estimating Discard Survival (WKMEDS, WGMEDS). Advice on scientific evidence with 
respect to high survival exemptions from the European Union (EU) landing obligation was given to the 
Ministry for Food, Agriculture and Fisheries. The results in this report have been disseminated to vari-
ous stakeholders of the management, industry, and the public through presentations and dissemina-
tion articles, as well as to the scientific community through peer-reviewed publications. Furthermore, 
the results are continuously being used for educational purposes. 
 
The authors thank the immensely helpful crews of the fishing vessels S84 Ida-Katrine, S15 Vera-Ma-
rie, and R3 Orion who agreed to welcome us onboard, as well as R41 Polarbjørn, R254 Katrine Kim 
and R419 Emanuel who kindly collected oxygen data for us during normal gear operation, as well as 
Henrik Lund from DFPO, and the Skagen and Bornholm fishermen organizations. We would also like 
to thank our colleagues at DTU Aqua for their involvement in the project: the crew of R/V Havfisken 
for initial trials in COPE; Per Christensen, Søren Eskildsen, Søren Grønby, Brian Thomsen, and Kas-
paras Bagdonas for providing essential support during the sea trials; Dr. Manuel G. Rodriquez, Dr. 
Lars-Flemming Petersen, Dr. Carlos Letelier-Gordo, Reinhardt Jensen and Rasmus Frydenlund Jen-
sen for help with the design, installation and operation of the observation system at the facility in Hirt-
shals and Dr. Sune Riis Sørensen in Bornholm; Helle Andersen for help with assessing the fish during 
the monitoring period in Hirtshals; and Ulla H. Sproegel for analyzing water samples. We owe our 
thanks to our colleagues Josefine Egekvist and Kirsten Birch Håkansson for their help with extracting 
fleet data from the Data Collection Framework and logbook databases. We owe our thanks to our 
neighbor, Martin Riis at the Nordsøen Oceanarium, for good advice with respect to fish transport and 
Claus Drivsholm at the Nordsøen Forskepark for access to experimental facilities in Hirtshals. We are 
grateful for the warm welcome at Bornholms Lakseklækkeri and for the assistance of Gert Jørgensen 
and Eskild Aae in assessing the fish during the monitoring period in Bornholm. We are thankful for the 
guidance given by special consultant Leif R. Lund at the Animal Experiments Inspectorate during the 
application process for the animal welfare approval.  
 
The authors acknowledge and are grateful for the contributions of the members of the ICES 
WGMEDS, especially Thomas Catchpole, Marie Morfin, Hugues Benoit, Michael Alves Teixeira, and 
Mike Breen for the meta-regression work. We would especially like to highlight the involvement of 
ILVO by letting our Belgian colleague (Sebastian Uhlmann, Bart Ampe) not only help with training and 
harmonizing of the reflex and damage assessments (during field visits in 2017 and 2020), but also 
share their exciting optimization and temperature investigations. Sebastian Uhlmann acknowledges 
the receipt of a fellowship from the OECD Co-operative Research Program “Sustainable Agricultural 
and Food Systems” in 2022. We are also grateful to Lisbeth Nielsen and Sonja Østerlund Feldthaus 
from the Ministry for Food, Agriculture and Fisheries, and the Scheveningen and BALTFISH Groups 
for preparation of requests for high survival exemptions from the EU landing obligation in the Joint 
Recommendations, the North Sea Advisory Council (NSAC) Skagerrak and Kattegat working group 
for discussion of the results, and to experts and chairs at the Scientific, Technical and Economic Com-
mittee for Fisheries (STECF) Expert Working Group (EWG) on the evaluation of landing obligation 
joint recommendation, and especially Dominic Rihan. 
 
December 2023 
  
Junita D. Karlsen                                                                        Esther Savina 
Senior Researcher, DTU Aqua                                                   Researcher, DTU Aqua 
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Summary 

The reform of the European Union (EU)'s Common Fisheries Policy (CFP) in 2013 has led to signifi-
cant changes in fisheries management, including an obligation to land all catches from regulated 
stocks, i.e. a ban on throwing unwanted catch back into the sea. The goal of the landing obligation is 
to promote more selective and targeted fishing that reduces unwanted bycatch. It is possible to put 
fish back into the sea instead of landing them if it can be scientifically proven that there is a high sur-
vival rate in a specific fishery. However, the criterion for what counts as "high" is not set and is evalu-
ated for each individual case by the EU. 
 
This report presents the work of DTU Aqua on discard survival of undersized European plaice (Pleu-
ronectes platessa, below 27 cm in the North Sea and Skagerrak, below 25 cm in the Baltic) caught 
using towed gears in commercial demersal fisheries for human consumption. This work has focused 
on:  

• estimate survival rates with the aim of obtaining exemptions from the landing obligation, 
• improve our understanding of how operational, environmental, and biological stressors affect 

discard survival rates, 
• explore the opportunity to create robust discard survival estimates from meta-analysis; iv) in-

vestigate the effect of the environment (temperature) on reflex impairment,  
• develop and test the performance of an optimized reflex and injury index,  
• use expert knowledge (Bayesian modelling) to predict discard survival. 

 
We estimated survival rates as scientific documentation for seeking exemptions from the landing obli-
gation in the EU CFP for three fleets: the Danish seine and bottom otter trawl fleets1 operating in 
Skagerrak, Kattegat, and the North Sea (ICES subdivision 3a and 4), and bottom otter trawls operat-
ing in the Baltic Sea (ICES subdivisions 22-25). Survival estimates considered the characteristics of 
the gear (gear types and designs), fishing practices (target species, seasonality, and handling prac-
tices) and ecosystem (e.g., hazards from hard-shelled prey items, or area-specific variability in oxygen 
conditions in the Baltic Sea), as required by the CFP. 
 
The studies found the following survival rates in different situations:  

• In a conservative scenario, i.e., discard survival during the warm water season (August-Octo-
ber) in Skagerrak, the discard survival in the demersal mixed fishery using an otter trawl with 
a 90 mm codend and a 120 mm SELTRA-panel fishing was 44% (95% confidence interval CI: 
37%-52%).  

• In comparison, it was 78% (95% CI:  67%-87%) in the Danish seine fishery fishing simultane-
ously. The discard survival rate for the otter trawl when targeting plaice improved to 75% 
(95% CI: 67%-83%) in the cold-water season (March).  

• When fishing for Norway lobster (Nephrops norvegicus), the discard survival rate during win-
ter was reduced to 40% (95% CI: 28%-57%) due to more injuries to the plaice when caught 
together with Nephrops.  

• When we changed the design into a divided codend separating fish from Nephrops, the sur-
vival rate of plaice was higher with mean 94% (95% CI: 81%-100%) when caught together 
with fish in the upper panel than when caught in the lower compartment with Nephrops (61%, 
95% CI: 48%-73%) or when mixed with Nephrops in the standard gear. The number of indi-
viduals was however low due to the high selectivity in the fish compartment.  

 
1 These two gear types are managed together but have a very different fishing process. 
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• The lowest estimates of discard survival were observed when fishing plaice in the Baltic Sea 
with an otter trawl during a warm water period (autumn). A delayed survival rate of only 27% 
(95% CI: 9%-55%) was obtained when fishing with a T90 codend, and 14% (95% CI: 4%-
29%) when using a Bacoma codend. In the cold-water season (November to April)2, the sur-
vival rate was 87% (95% CI: 82%-92%).  

 
Based on the project's results, the EU Commission granted a year-round high survival exemption for 
plaice caught in the Danish seine fishery in Skagerrak and Kattegat (ICES Division 3a) and North Sea 
(ICES Subarea 4; EU, 2018, §16). The bottom otter trawl fishery was granted an exemption for the 
winter season (EU, 2018, §17). For the Baltic Sea, in line with Kraak et al. (2018) in the German 
mixed demersal trawl fishery in ICES subdivision 22, the discard survival observed in our study might 
be considered “high” for plaice in winter. However, the High-Level Regional Group (BALTFISH) de-
cided not to include a request for high survival exemption for plaice in the Joint Recommendation. 
 
We investigated the effect of dissolved oxygen level at capture on delayed plaice mortality. Oxygen 
levels were related to seasons, with lower levels in autumn than in winter (confounding factors). Hy-
poxia-resistant priapulids were more common in stomachs from plaice caught in autumn, likely be-
cause a part of these stomachs comes from areas with severe hypoxia. The data on stomach con-
tents indicate that plaice are performing excursions between areas or depths of different levels of hy-
poxia - a part of them probably feeds in severe hypoxia and returns to moderate hypoxia / normoxia to 
digest and recover, like it seems to be the case for cod in the eastern Baltic Sea. Fish discarded to 
hypoxic waters had a more severe stress response and a prolonged recovery period but recovered 
their measured biochemical indicators and oxygen consumption rates to pre-stress conditions within 
24h, with no stress-related mortalities. Fish that were exposed to trawl simulation and discarded to 
hypoxic conditions showed no indications of trying to escape oxygen-poor conditions. Instead, they all 
burrowed in the sediment immediately following release. It remains unequivocal whether simulated 
trawl exerts the same magnitude of stress as experienced during commercial fishing. 
 
An additional variable contributing to post-catch mortality may be the damage to the intestine during 
the catch and sorting processes due to sharp shell fragments in situations where plaice are feeding 
heavily on mussels. The sampled plaice were considered individual specialists, which means that the 
individual prey type in general is consumed only by a moderate part of the plaice and amounts to a 
significant part in the stomachs in which it occurs. There were fewer prey categories in wintertime 
(amphipods and mysids were missing), which is not surprising. There was no visible relationship be-
tween survival and shell content3.  
 
The common way to estimate survival rates is to observe in captivity fish that would be discarded un-
der commercial conditions, until the mortality levels off. Such captive observation studies are labor-
intensive, logistically challenging, and financially demanding. As an alternative, measures of impair-
ment in fish condition can be used as an indicator for discard survival providing that they are cali-
brated with survival likelihood estimates from, e.g., captive observation studies. Promising indicators 
of fish condition as good survival proxies are external damages and reflexes (scoring the presence or 
absence of pre-determined attributes) pooled into an index. The optimization procedure aimed at find-
ing the weighing of the reflex and injury attributes into the index (usually fixed to 0.1) with the best 
predictive performance. Bruising in the head and body were the most important contributors to the 
survival probability of discarded plaice with 90 and 95% of the best models showing coefficients 
higher than 0.10. Overall, none of the individual reflex or injury indicators were independent of 

 
2 With running water in the hopper 
3 Winter data 
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biological, environmental, technical, and operational covariates when predicting plaice discard sur-
vival, both at fish and trip levels. The best models (based on AIC) for each vitality indicator all included 
the interaction between air exposure and sea temperature. The optimized index did not improve pre-
dictions markedly as both the reflex impairment and injury index as well as the less labour-intensive 
categorical vitality score were almost equally valuable proxies of plaice discard survival. When we 
compare observed and predicted survival ratio for each trip in the context of management purposes, 
i.e., assessing whether the survival ration is high, all vitality indicators could correctly predict high 
(>0.50) or low (<0.50) survival except for one trip.  
 
In contrast to traditional (frequentist) methods previously used in our survival studies, the Bayesian 
network model approach can integrate expert knowledge regarding life-history traits and the prevailing 
operational, environmental, and biological conditions of fisheries to predict survival probability after 
release. This expert system may be suitable as a low-cost decision support tool for fisheries manag-
ers. The classification error of the ensemble approach was much lower than fitting a single naive 
Bayes model on multiple trips simultaneously or from causal network learned from data. Discretising 
all variables into three levels appeared to be a good trade-off between predictive accuracy, model 
complexity and predictive accuracy. Introducing the individual reflexes and injuries did not improve the 
predictive accuracy of the model. We also built an operational Bayesian Belief Network (BNN) model 
to estimate post-release survival potential of discarded plaice. The BBN model was constructed from 
a combination of historical data and subject matter expert knowledge. The typical user case would be 
to identify species-fisheries for which it would be meaningful to collect scientific documentation for a 
high survival exemption in the context of the CFP. The model output indicates the probability of a sur-
vival rate above 50% and can be used as a relative score to compare different scenarios. 
 
While obtaining discard survival estimates have been a main aim of most studies for advisory pur-
poses, investigations on factors affecting the survival rates have been made in parallel to reduce the 
need for demanding capture observation studies, and at the same time achieve more robust discard 
survival estimates and to inform how fishing operations can be changed to improve survival rates. In-
vestigations on how various factors influence discard survival could to a higher degree be performed 
under controlled conditions in the laboratory. The link between observed vitality, reflex impairment, 
external damages, and survival, is still not well understood, specifically with respect to how quickly (or 
slowly) fish are able to recover from the capture process.  
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Sammendrag 

Reformen af EU’ Fælles Fiskeripolitik i 2013 har ført til betydelige ændringer i fiskeriforvaltningen. En 
af ændringerne er en forpligtelse til at lande alle fangster fra regulerede bestande, dvs. et forbud mod 
at smide uønsket fangst tilbage i havet. Målet med landingsforpligtelsen er at fremme et mere selek-
tivt og målrettet fiskeri, der mindsker uønsket bifangst.  
 
Ifølge reglerne er der mulighed for at sætte fisk tilbage i havet i stedet for at lande dem, hvis det kan 
påvises videnskabeligt, at der er en høj overlevelsesrate i det specifikke fiskeri. Kriteriet for hvad der 
regnes som ”høj” er dog ikke fastsat og evalueres for hver enkelt sag af EU. Denne rapport præsente-
rer DTU Aquas undersøgelser af overlevelsen hos rødspætter (Pleuronectes platessa) under mindste 
reference størrelsen (mindre end 27 cm i fiskeriet i Nordsøen og Skagerrak og under 25 cm i Øster-
søen). Rødspætterne er fanget med trawlredskaber i det kommercielle demersale fiskeri til menne-
skeligt konsum. 
 
Arbejdet har haft fokus på 

• at estimere overlevelsesrater med det formål at opnå undtagelse fra landingsforpligtelsen, 
• at forbedre viden om, hvordan operationelle, miljømæssige og biologiske stressfaktorer på-

virker overlevelsesraten hos fisk, der sættes tilbage i havet efter at være blevet fanget, 
• at udforske muligheden for at skabe robuste estimater over overlevelsen ved hjælp af meta-

analyse, 
• at undersøge effekten af miljøet (temperaturen) på forringelsen i fiskens reflekser, 
• at udvikle og teste ydeevnen af et optimeret refleks- og skadesindeks, 
• at anvende ekspertviden (Bayesian-modellering) til at forudsige overlevelsen ved udsmid.  

Undersøgelserne omfatter tre fiskeri flåder: det danske fiskeri med snurrevod og bundtrawl4 i Skager-
rak, Kattegat og Nordsøen (ICES-område 3a og 4) og det danske fiskeri med bundtrawl i Østersøen 
(ICES-område 22-25). Som krævet i den fælles fiskeripolitik har vurderingen af overlevelsen taget 
hensyn til redskabets karakteristika (redskabstype og design), fiskemetoder (målarter, sæsonvariation 
og håndtering) og økosystemet (f.eks. risikoen for at skaldyr kan skade fiskene under fangst eller om-
rådespecifikke variationer i iltforholdene i Østersøen). 
 
Undersøgelserne fandt følgende overlevelsesrater i forskellige situationer:  

• I et konservativt scenarie, dvs. i en årstid (august-oktober), hvor vandet er varmt i Skagerrak, 
var overlevelsen 44% efter udsmid i det demersale blandede fiskeri med bundtrawl med en 
90 mm fangstpose og et 120 mm SELTRA-panel (95%-konfidensinterval: 37%-52%). 

• Sammenlignet hermed var overlevelsen 78% (95%-konfidensinterval: 67%-87%) i det danske 
snurrevodfiskeri, som foregik samtidig.  

• Overlevelsesraten i bundtrawlsfiskeriet efter rødspætter forbedrede sig til 75% (95%-kon-
fidensinterval: 67%-83%), når vandet var koldere (marts).  

• Når der blev fisket efter jomfruhummer (Nephrops norvegicus), var overlevelsesraten om vin-
teren reduceret til 40% (95%-konfidensinterval: 28%-57%) på grund af flere skader på rød-
spætterne, når de blev fanget sammen med jomfruhummere.  

• Når vi ændrede designet til en opdelt fangstpose, der adskiller fisk fra jomfruhummere, var 
overlevelsesraten for rødspætter højere med et gennemsnit på 94% (95%-konfidensinterval: 
81%-100%) ved fangst sammen med fisk i den øverste del af redskabet end ved fangst i den 
nedre del sammen med jomfruhummere (61%, 95%-konfidensinterval: 48%-73%), eller når 
rødspætterne blev blandet med jomfruhummere i standardredskabet. Antallet af individer var 
dog lavt på grund af den høje selektivitet i fiskedelen af redskabet.  

 
4 Disse to redskabstyper bruges sammen, men har meget forskellige fiskeprocesser. 
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• De laveste estimater på overlevelse efter udsmid blev observeret ved fiskeri efter rødspætter i 
Østersøen med snurrevod i den varme årstid (efterår). En forsinket overlevelsesrate på kun 
27% (95%-konfidensintervaI: 9%-55%) blev opnået ved fiskeri med T90, og 14% (95%-kon-
fidensinterval: 4%-29%) ved brug af Bacoma. I årstider med koldt vand (november til april)5 
var overlevelsesraten 87% (95%-konfidensinterval: 82%-92%). 

På baggrund af projektets resultater, gav EU-Kommissionen i 2018 en helårlig undtagelse med høj 
overlevelse for rødspætter fanget i det danske snurrevodsfiskeri i Skagerrak og Kattegat (ICES-om-
råde 3a) og Nordsøen (ICES-subområde 4; EU, 2018, §16) gældende fra 2019. Fiskeriet med bund-
trawl fik samtidig en undtagelse for landingsforpligtelsen for rødspætter i vintersæsonen (EU, 2018, 
§17). Denne undtagelse er senere blevet udvidet til flere maskestørrelser og redskabsdesign. I Øster-
søen kunne overlevelsen observeret i vores undersøgelse betragtes som "høj" for rødspætter om vin-
teren, hvilket er i overensstemmelse med undersøgelser (Kraak et al., 2018) i de tyske blandede de-
mersale fiskeri med bundtrawl i ICES-område 22. Dog besluttede den regionale forvaltningsgruppen 
BALTFISH ikke at inkludere en undtagelse fra landingsforpligtelsen i dette tilfælde i den fælles anbe-
faling. 
 
Vi undersøgte også effekten af iltniveauet ved fangsten på dødeligheden hos rødspætterne. Iltniveau-
erne varierede efter årstiden med lavere niveauer om efteråret end om vinteren. Om efteråret var pøl-
seorme (Priapulida), som kan tåle lave iltniveauer, mere almindelige i maverne fra de rødspætter, der 
blev fanget – sandsynligvis fordi en del af rødspætterne kom fra områder med alvorlig iltmangel. Data 
for maveindholdet indikerer, at rødspætter flytter sig mellem områder eller dybder med forskellige ni-
veauer af ilt. En del af dem søger sandsynligvis føde i områder med alvorlig iltmangel og vender til-
bage til områder med moderat iltmangel eller normalt iltindhold for at fordøje og komme sig, ligesom 
det synes at være tilfældet for torsk i Østersøen. Fisk, der blev sat tilbage i farvande med iltmangel, 
havde en mere alvorlig stressrespons, og det tog længere tid for dem at komme sig, men inden for 24 
timer var de biokemiske indikatorer og evnen til at optage ilt tilbage på samme niveau, som før de 
blev fanget, og der var ingen stress-relaterede dødsfald. Fisk, der blev udsat for en simuleret fangst i 
trawl og sat ud i vand med iltmangel, viste ikke tegn på at forsøge at undslippe de iltfattige forhold. I 
stedet gik de alle ned i sedimentet umiddelbart efter udsætningen. Det er uklart, om simuleret trawlfi-
skeri udøver samme grad af stress, som fisken vil opleve under kommercielt fiskeri. 
 
En yderligere faktor, der bidrager til dødeligheden efter fangst, kan være skader på tarmen under 
fangst- og sorteringsprocessen. Det kan skyldes skarpe dele fra skaller, når rødspætterne har spist 
muslinger. I undersøgelsen var der ingen synlig sammenhæng mellem overlevelse hos rødspætterne 
og skalindhold i maverne6. Hos de rødspætter, der indgik i undersøgelsen, kunne man se, at de er 
individuelle specialister i fødesøgning, dvs. at hver type byttedyr generelt kun bliver spist af en mode-
rat del af rødspætterne, men udgør en betydelig del af indholdet i maverne, hvor den forekommer. 
Der var færre kategorier af byttedyr om vinteren (amfipoder og mysider manglede), hvilket ikke er 
overraskende. 
 
Den almindelige måde at estimere overlevelsesrater på er at observere fisk i fangenskab, som ville 
blive kasseret under kommercielle forhold, indtil dødeligheden flader ud. Sådanne studier er arbejd-
skrævende, logistisk udfordrende og dyre. Som et alternativ kan målinger af forringelser i fiskens til-
stand bruges som indikator for overlevelse ved udsmid. Det forudsætter, at indikatorerne kalibreres 
med overlevelsesestimater fra f.eks. observationsstudier i fangenskab. Lovende indikatorer for fisks 
tilstand, som er gode til at forudsige overlevelseschancen, er reflekser og udvendige skader. Der gi-
ves point for tilstedeværelse eller fravær af forudbestemte markører, og resultatet samles i et indeks. 

 
5 Med rindende vand i pounderen.  
6 Vinterdata. 



Discard survival of undersized European plaice caught with towed fishing gears in Danish waters                                            12 

DTU Aqua har arbejdet med at optimere vægtning af refleks- og skadesmarkørerne i indekset (nor-
malt fastsat til 0,1) for at få den bedste forudsigelse. Blå mærker på hoved og krop er de markører, 
der havde størst betydning for chancen for at overleve hos rødspætter, der skal smides tilbage i ha-
vet. De bedste modeller inkluderede altid en forbindelse mellem fiskens udsættelse for luft og hav-
vandstemperaturen, uanset hvilken indikator der blev undersøgt. Det optimerede indeks forbedrede 
ikke forudsigelser markant, da både reflekssvækkelse og skadesindeks samt den mindre arbejdsin-
tensive kategoriske vitalitetsscore var næsten lige så værdifulde proxyer for overlevelse af rødspætte-
udsmid. Når vi sammenligner observeret og forudsagt overlevelsesratio for hver tur i forbindelse med 
ledelsesformål, dvs. vurderer, om overlevelsesrationen er høj, kunne alle vitalitetsindikatorer korrekt 
forudsige høj (>0,50) eller lav (<0,50) overlevelse undtagen for en tur. 
 
I modsætning til traditionelle metoder (baseret på hyppighedsgrad), der blev brugt i vores overlevel-
sesstudier, kan en Bayesian-netværksmodeltilgang integrere ekspertviden om livshistorietræk og de 
operationelle, miljømæssige og biologiske forhold i fiskeriet og på den måde forudsige sandsynlighe-
den for, at fisken overlever efter at være sat tilbage i havet. Dette ekspertsystem kan være egnet som 
et omkostningseffektivt beslutningsstøtteværktøj for fiskeriforvaltere. Inddragelse af information om 
fiskenes individuelle reflekser og skader forbedrede ikke modellens nøjagtighed. Vi udviklede også en 
operationel Bayesian Belief Network (BNN)-model til at estimere overlevelsespotentiale for rødspæt-
ter, efter at de er smidt tilbage i havet. BBN-modellen blev konstrueret ud fra en kombination af histo-
riske data og viden fra eksperter. Den typiske anvendelse vil være at identificere arts-fiskerier, hvor 
det ville være meningsfuldt at indsamle videnskabelig dokumentation for høj overlevelse for at kunne 
få en undtagelse for landingsforpligtelsen i Den Fælles Fiskeripolitik. Outputtet fra modellen angiver 
sandsynligheden for en overlevelsesrate over 50% og kan bruges som en relativ score til at sammen-
ligne forskellige scenarier. 
 
Selvom hovedformålet med rapporten har været at fremlægge skøn over overlevelsen hos rødspætter 
efter udsmid, har vi parallelt undersøgt faktorer, der påvirker overlevelsesraten. Formålet med disse 
supplerende undersøgelser har været at reducere behovet for krævende observationsstudier af fisk i 
fangenskab, at få mere robuste skøn over overlevelsen og at få viden om, hvordan fiskeriet kan æn-
dres for at forbedre overlevelsesraterne. Undersøgelser af, hvordan forskellige faktorer påvirker over-
levelsen efter udsmid, kunne i højere grad udføres under kontrollerede forhold i laboratoriet. Sam-
menhængen mellem observeret vitalitet, refleksnedsættelse, ydre skader og overlevelse er stadig ikke 
godt forstået, især med hensyn til hvor hurtigt (eller langsomt) fisk er i stand til at komme sig efter at 
være blevet fanget.  
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1. Background 

1.1. Introduction 
The reform of the European Union (EU) Common Fisheries Policy (CFP) in 2013 has introduced a 
substantial change to fisheries management, including a phased introduction from 2015 to 2019 of an 
obligation to land all catches taken from regulated stocks. The aim of this landing obligation is to end 
the wasteful practice of discarding by encouraging the fishermen to avoid unwanted catches and im-
prove the selectivity of their fishing processes. The transition from landing quotas to catch quotas low-
ers the quota value and increases the risk of choke-species, i.e., saturation of low-quota species that 
prevent the use of other, higher-quota species if the low-quota species cannot be avoided. However, 
article 15 paragraph 4b of the CFP regulation (EU) No 1380/2013 allows for the possibility of returning 
at sea species for which scientific evidence demonstrates high survival rates (EU, 2013). Such ex-
emptions aim at reducing the risk under the European landing obligation of bringing onshore individu-
als that may otherwise survive the capture-and-discard process. 
 
Central to any proposal for an exemption is the requirement for clear and defensible scientific evi-
dence on discard survival rates. The survival rate needs, according to the CFP regulation, to consider 
“the characteristics of the gear, of the fishing practices and of the ecosystem”. In a case-by-case ap-
proach, the Scientific, Technical and Economic Committee for Fisheries (STECF) evaluates survival 
estimates in the context of the fishery seeking an exemption, especially regarding the habitat, season, 
and handling practices as well as the implications an exemption may have for a given fish stock by 
evaluating the amount of discard and the discard ratio in the fishery (Bailey et al., 2018; STECF, 
2017). 
 
The opportunity of getting high survival exemptions from the landing obligation has led to increasing 
requests from managers and the fishing industry throughout Europe for research on discard survival 
to obtain survival estimates for specific species, fishing gears, and fishing areas. The studies pre-
sented in this report aim at providing survival estimates for European plaice (Pleuronectes platessa, 
hereafter referred to as plaice) in different Danish fisheries and understanding how different stressors 
affect discard survival as well as developing methodology to aid future investigations. Specifically, the 
studies have focused on the following research aspects:  

i) Estimation of survival rates with the aim of scientifically documenting survival to support re-
quests for exemptions from the landing obligation.  

ii) Improving our understanding of how operational, environmental, and biological stressors af-
fect discard survival. 

iii) Exploring the opportunity to create robust discard survival estimates from meta-analysis. 

iv) Investigating the effect of the environment (temperature) on reflex impairment. 

v) Developing and testing the performance of an optimized reflex and injury index. 

vi) Using expert knowledge to predict discard survival. 

1.2. High survival exemption process and advice 
The scientific evidence supporting each request for exemption is based on data collected in a fishery-
specific study and is delivered as scientific advice to the respective member state managers (Figure 
1). The proposed exemptions need to achieve agreement in a High-Level Group composed of manag-
ers from all the member states surrounding the water body in which the respective fishery is 
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conducted. Relevant for the work presented in this report is the Scheveningen Group, which is the 
High-Level Group for the Skagerrak, Kattegat, and North Sea areas, and BALTFISH, which is the 
High-Level Group for the Baltic Sea. Details of proposed exemptions under the high survival provision 
are then provided by regional managers in Joint Recommendations for amendment in multiannual or 
discard plans. After consulting the regional Advisory Group for the North (Skagerrak and Kattegat 
sub-group) or Baltic Seas, the Joint Recommendations are submitted to the European Commission 
(EC). Consultations between the Directorate-General for Maritime Affairs and Fisheries (DG MARE), 
STECF and the High-Level Group follows and proposals approved by the EC are enacted as a Com-
mission Delegated Regulation. The Delegated Regulations are reviewed triennially. Some of the ex-
emptions may be issued with special conditions such as providing further scientific evidence for a con-
tinued exemption to be approved. 

 

Figure 1. The process of requesting a high survival exemption from the landing obligation with approxi-
mate timeline (from Viva et al., 2016). 

 
The level at which survival is considered ‘high’ is not defined in the CFP. It involves trade-offs be-
tween different management and societal objectives prioritized for a given fishery at a given time (Ri-
han et al., 2019). Although ‘high survival’ implies that a larger proportion of a species survives than 
dies, exemption has been granted in cases where the survival rate is less than 50% (Rihan et al., 
2019). STECF recommends that the underlying evidence supporting the request for exemption should 
include i) a description of the stock of the species (see 1.5) and the fishery (e.g., vessel characteris-
tics of the fishing fleet, seasonal catch patterns, and discard rates; see 1.6) for which the exemption is 
being sought; ii) a description of how representative the survival data are for the fishery (see 2.8); and 
iii) a description of the available scientific evidence on discard survival rates relevant to the fishery 
(see 2.8; STECF, 2015). 
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For the cases studies presented in this report, the EC granted a year-round high survival exemption 
for plaice caught in the Danish seine fishery in Skagerrak and Kattegat (ICES Division 3a) and North 
Sea (ICES Subarea 4; EU, 2018, §16; EU, 2019b, §19). The bottom otter trawl fishery (OTB, PTB) 
with a mesh size of at least 120 mm when targeting fish was granted an exemption for the winter sea-
son (1 November to 30 April) in the same areas (EU, 2018, §17, Article 6(1b); EU, 2019b, §20). Both 
exemptions were granted for the period 2019-2021. In 2019 the regulation was corrected to include 
the trawl category OTT (EU, 2019a, Article 1(2)). The exemptions for both gear types remained in the 
subsequent evaluation for the period 2021-2023 (EU, 2020, §14-§15).  
 
In 2019, an exemption for plaice caught in trawl fisheries during the summer as well as for a larger 
range of mesh sizes, i.e., including at least 90-99 mm equipped with a SELTRA panel in Skagerrak 
and Kattegat (ICES Division 3a) and at least 80-99 mm in the North Sea (ICES Subarea 4), was 
granted for one year (2020-2021) with the opportunity to collect more evidence by 1 May 2020 (EU 
2019b, §25-§26; Article 6(2)). The exemption for the summer months was not extended, but sufficient 
evidence was provided for the 2021-2023 period to extend the exemption to include mesh size of 90 
to 119 mm equipped with SELTRA panel with a top panel of 140 mm mesh size (square mesh), 270 
mm mesh size (diamond mesh) or 300 mm mesh size (square-mesh) in Skagerrak and Kattegat, and 
mesh size of 80 to 119 mm in the North Sea (EU 2020, §15, Article 6(1cii-iii)). In 2021, the trawl ex-
emption was further broadened to use square mesh panels of at least 120 mm in Kattegat in the pe-
riod 1 October to 31 December (EU, 2021, §5, Article 1(1)). The exemptions are being evaluated in 
2023 for the next period 2023-2025.  
 
For the Baltic Sea, the High-Level Regional Group BALTFISH decided not to include a request for 
high survival exemption for plaice in the Joint Recommendation. 
 

1.3. Species catalogue of discards for fisheries involving flatfish 
When receiving requests for high survival exemptions from the CFP landing obligation, STECF is 
evaluating the survival estimates in relation to the amount of discard of the given species in the given 
fishery. It is typically evaluated in two complementary ways; i) the absolute amounts of discards given 
for example in weight, and ii) the discard ratio, i.e., the proportion of fish discarded of the total landed 
over a given time period (e.g., annually). A fishery may have a large amount of discard, but when 
seen in relation to the total catch, the discard ratio may be low. Similarly, a fishery may have a high 
discard ratio, but if the catches are small, the absolute amount of discard measured in weight may be 
low.  
 
A species catalogue including both discard measures (absolute amount and discard ratio) was estab-
lished for the most important flatfish species, brill (Scophthalmus rhombus), common dab (Limanda 
limanda), European flounder (Platichthys flesus), lemon sole (Microstomus kitt), plaice, common sole 
(Solea solea), turbot (Scophthalmus maximus), and witch flounder (Glyptocephalus cynoglossus) 
caught in the fishing areas Skagerrak (ICES Subdivision 20), Kattegat (ICES Subdivision 21), and the 
North Sea (ICES Subarea 4; Supplementary material A). The aim of the catalogue was to facilitate the 
management evaluation of the implications a potential high survival exemption for a given species 
and fishing fleet (active or passive gear type, mesh size, and target catch) would have on the associ-
ated fish stock. For each species, discard survival estimates from studies reported in the literature in 
2018 or earlier were included, but additional discard survival rates have been estimated for several 
species in recent years (e.g., common sole, Oliver et al. 2019; plaice, Savina et al., 2019; Noack et 
al., 2020), including other animal groups such as roundfish (European seabass, Dicentrarchus labrax, 
Randall et al., 2021; Atlantic cod Gadus morhua, Oliver et al., 2022), elasmobranchs (e.g., undulate 
ray, Raja undulata, Morfin et al., 2019; sharks, Hutchinson et al., 2022), and invertebrates (e.g., 
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Asterias rubens, Atelecyclus undecimdentatus, Aphrodita aculeata, Buccinum undatum, Maja brachy-
dactyla, and Pagurus sp., Boussarie et al., 2020; Nephrops, Fox et al., 2020; Cancer pagurus, Ro-
drigues et al., 2021). Also, a qualitative assessment and ranking of species according to their robust-
ness, where higher robustness means a higher chance to survive the capture and discard processes, 
and discard amounts was included in the species catalogue (Table A.14 in Supplementary material 
A). 
 

1.4. Choice of the species and Danish fisheries to be investigated 
At the onset of the discard survival investigations in 2017, the identification of which species, fishing 
gears, fishing areas, and seasons to include in the case studies was done in collaboration with man-
agers and the Danish Fishermen Producer Organisation (DFPO). Based on the importance of the fish-
ery in terms of the level of landings and absolute discards and expected resilience to the catching and 
handling process as suggested from the literature and the experience of the fishers, it was decided to 
focus on flatfish species. The managers and DFPO identified four candidate species for which poten-
tial high survival exemptions from the landing obligation were relevant. In order of priority, these were: 
plaice, common sole, lemon sole, and common dab. Both stakeholders gave the highest priority to 
plaice, which was selected as the study species. 
 
Plaice was an important target species in Danish fisheries for human consumption throughout Danish 
waters in 2017 and still is (DFPO, 2018, 2023). Plaice has no swim bladder and is considered robust 
with respect to surviving the fishing process, partly due to its sedentary lifestyle that has evolved to-
wards enhanced metabolic adaptation to hypoxia (Benoît et al., 2013; Morfin et al., 2017a, b). It there-
fore was as a good candidate species for investigating discard survival. 
 
It was further decided to conduct the experiments on discard survival in the demersal trawl fishery as 
this is capturing high amounts of plaice. Furthermore, the industry requested to conduct parallel stud-
ies for the Danish seine fishery. Here, fish is caught towards the end of the catching process (Noack 
et al., 2019), and so was likely to obtain a higher discard survival compared to trawl fisheries. The 
strategy was to choose the most hazardous operational and environmental conditions during the ex-
periments to investigate discard survival in a “worst-case” scenario as high survival rates under these 
conditions would also be valid for less stressful conditions. 
 
The experiments in the Danish seine (Case study 1) and bottom otter trawl (Case study 2) fisheries 
were conducted in Skagerrak (ICES Subdivision 20) in 2017-2018, and for the bottom otter trawl fish-
ery, experiments (Case study 3) were extended to the Western Baltic Sea (ICES Subdivision 24) in 
2020-2021 (Table 1; Figure 2). 
 
Table 1. Naming structure of the fishing areas relevant for the experimental Case studies and the associ-
ated exemptions from the landing obligation defined by Food and Agriculture Organisation of the United 
Nations (FAO) (FAO, 2023). This structure of fishing areas is also a basis for ICES advisory areas. 

Fishing area Geographical area 
Area 27 Northeast Atlantic 

  Subarea (27) 3 Skagerrak, Kattegat, Sound, Belt Sea, and Baltic Sea 
    Division (27) 3a Skagerrak, Kattegat 
      Subdivision 20 Skagerrak 
      Subdivision 21 Kattegat 
    Division (27) 3d Baltic Sea 
      Subdivision 24 Western Baltic 

  Subarea (27) 4 North Sea 



Discard survival of undersized European plaice caught with towed fishing gears in Danish waters                                            17 

 

 
 
Figure 2. Map of ICES Subarea 4 (North Sea) divided into Division 4a (Northern North Sea) and Division 
4b (Central North Sea), and ICES Subarea 3 divided into Divisions of which Division 3a (Subdivision 20, 
Skagerrak; and Subdivision 21, Kattegat) and Division 3d (Subdivision 24) are relevant for the conducted 
discard survival studies (adapted from ICES area maps, 2016). 

 

1.5. Plaice stock status 
When high survival exemptions from the landing obligation are granted for a given species and fish-
ery, individuals under Minimum Conservation Reference Size (MCRS) may be returned to their stock. 
The level of discard survival of plaice presented in the scientific evidence is being evaluated in rela-
tion to the health of the associated plaice stock and the impact an exemption may have on the stock if 
granted. It is therefore relevant to present the health of the plaice stocks for the areas in which the 
Case studies were conducted and additional areas included in the requests for exemptions: Skager-
rak and the North Sea; Kattegat, Belt Seas, and Sound; and the Baltic Sea. 
 
1.5.1. Skagerrak and North Sea stock 
Plaice in the Skagerrak where Case study 1 and 2 were conducted in 2017-2018, has been assessed 
together with the North Sea stock since 2015 (ICES Advice, 2018b). Plaice under MCRS were in-
cluded in the high survival exemptions from the landing obligation both for Skagerrak and the North 
Sea in 2018. At that time, the stock was considered to have full reproductive capacity and to be sus-
tainably harvested. Fishing pressure on the stock was below FMSY and spawning-stock size is above 
MSY Btrigger, Bpa, and Blim, and this is also the current stock status (Figure 3, ICES Advice, 2023a and 
2023b). 
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Figure 3. Plaice stock in the Skagerrak and North Sea. Development of the fishing pressure (left) and the 
spawning stock biomass (right) (from ICES, 2023a). 

1.5.2. Kattegat, Belt Seas, and the Sound 
Plaice under the MCRS in the Kattegat were included in the high survival exemptions from the landing 
obligation in 2018 and could therefore be discarded from 2019. The plaice in this area is managed to-
gether with plaice in the Belt Seas and the Sound. The stock at the time of the experiment was har-
vested sustainably and had full reproductive capacity (ICES, 2018), which is also the current stock 
status ( 
Figure 4; ICES, 2023b). 
 

 
Figure 4. Plaice stock in the Kattegat, Belt Seas, and the Sound. Development of the fishing pressure, F 
(left) and the spawning stock biomass, SSB (right) (from ICES, 2023b).  

 

1.5.3. Baltic Sea stock 
Discard survival of plaice in the Western Baltic Sea (Case study 3) was conducted in Subdivision 24. 
Plaice in this area is managed together with those in the rest of the Baltic Sea (Subdivisions 25-32). 
During the discard survival experiments in 2020-2021, the Baltic Sea plaice stock was sustainably 
harvested. The fishing pressure was below FMSY and spawning-stock size was above MSY Btrigger and 
Blim (Figure 5; ICES, 2023c). The fishery in Subdivisions 24–32 has in recent years changed from be-
ing a directed cod fishery to becoming a targeted flatfish fishery. In this area, the plaice stock is expe-
riencing extraordinarily high recruitment pulses from the 2019- and 2020-year classes, which is con-
firmed from both surveys and commercial catches (ICES, 2023c). Depending on the nature of the de-
mersal fisheries, high catches of plaice below minimum size are to be expected (ICES, 2023c). 
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Figure 5. Development in relative fishing mortality, F, of plaice (left) and the plaice biomass (B) (from 
ICES, 2023c). 

 
In 2022, the landings decreased by nearly 50% compared to 2020 and 2021. This is likely caused by 
the low fishing opportunities for cod in the eastern Baltic, a fishery in which plaice is caught as by 
 
catch (ICES, 2023c). In the same period, the fishing fleet has been drastically reduced as fishers were 
offered support from EU funds to permanently decommission their vessels7. 
 

1.6. Fleet characteristics 
The absolute number of discards is higher in fisheries using active fishing gear than those using pas-
sive fishing gear due to the higher total catch weights when using active fishing gear. The stakehold-
ers chose to have discard survival investigated for plaice caught by Danish seine (Case study 1), and 
bottom otter trawl (Case study 2 and 3). 
 
At the onset of the studies in 2017, discard survival of several species had been investigated for dif-
ferent demersal trawl fisheries in other parts of Europe but there were no previous investigations of 
discard survival in the Danish seine (SDN) fishery. The two fisheries have common technical regula-
tions (Council Regulation (EC) 850/80), which also includes Scottish seine (SSC), but operationally 
they are very different (Noack et al., 2017). When fishing demersal fish (DEF) with a Danish seine, the 
fish are being caught in the net at the end of the fishing process (Noack et al., 2019). First, the gear is 
set by dropping an anchor, laying out the first seine rope, setting the net, laying out the second seine 
rope and returning to the anchor buoy. Second, the two seine ropes are hauled while the vessel is at 
the anchor buoy and so herd the fish as the area enclosed by the sein ropes decreases. Third, the 
netting is hauled towards the vessel to catch the fish. The fish thereby stay in the netting for a rela-
tively short time. It is well known by the fishing industry that this causes less catch damages to the 
catch compared with a trawl in which fish may stay in the codend for several hours (Karlsen et al., 
2015). Consequently, the survival of discarded fish was expected to be different and therefore both 
fisheries were investigated. Scottish seiners move forwards during the hauling of the seine ropes and 
is thus considered to be a hybrid between Danish seining and bottom otter trawling (Eigaard et al, 
2016). The seine ropes (4000-6000 m) are typically shorter than those in Danish seining, and the haul 
process is generally shorter than for trawling. 
 
In the bottom otter trawl (OTB) fishery in Skagerrak in 2017-2018 (Case study 2), the largest landings 
were in the mixed crustacean and demersal fish (MCD) segment. Vessels using codends with mesh 
sizes between 90-119 mm in Skagerrak typically target Nephrops, while those using ≥120 mm 
codends target demersal fish. In the North Sea, the highest landings were from vessels using ≥120 

 
7 https://oceans-and-fisheries.ec.europa.eu/news/fisheries-eu-reaches-provisional-agreement-reducing-fishing-fleet-baltic-sup-
port-eu-funds-2020-09-23_en#share 
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mm codends, while in the Baltic Sea, bottom otter trawling was done both with ≥120 mm codends 
(T90) and 105 mm diamond mesh with nominal 120 mm BACOMA panel. A small mesh netting has a 
larger surface than a large mesh netting and might have a larger mechanical influence on the surface 
of the fish body during the catch process, especially since codends are commonly made of knotted 
netting. It was therefore decided to use a 90 mm diamond mesh codend in Skagerrak (Case study 2). 
In addition, a horizontally divided codend was included. This consisted of a 120 mm square mesh up-
per compartment and a 60 mm square mesh lower compartment. A previous EFF-project, VærdiFisk 
(grant no. 33010-12-k-0235), found that the number of damages was significantly reduced if fish was 
separated from Nephrops during the catch process (Karlsen et al. 2015). Thus, using this codend 
could increase the discard survival of fish. Also, as the catch is partly sorted during fishing, sorting 
time onboard could potentially be reduced. This would be a major advantage since air exposure is a 
key factor affecting survival (Morfin et al. 2017b; van der Reijden et al. 2017). In the Baltic Sea in 
2020-2021 (Case study 3), both a 120 mm T90 codend and a 105 mm diamond mesh with nominal 
120 mm BACOMA panel were investigated. 

1.6.1. The Danish seine fleet in Skagerrak (Case study 1) 
In 2017 when Case study 1 was conducted, the Danish seine fleet targeting the demersal fish (DEF) 
counted 22 vessels in Denmark (logbook database 2017). The fleet operating in Skagerrak counted 
19 vessels in the size range of 15-32 m (122-681 kW). Of these, 5 vessels in the size range 15-20 m 
(vessel power 139-381 kW) used mesh sizes smaller than 120 mm, and 18 vessels in the size range 
13-32 m (vessel power 122-681 kW) used mesh size equal to or larger than 120 mm. I.e., some ves-
sels altered between gears in the two mesh size categories. The mean length and power of vessels 
using ≥ 120 mm were 17 m and 203 kW, respectively (Figure 6 and Figure 7). The mean length was 
similar to that of the vessel used during Case study 1 (16.1 m), but the mean power of the fleet was 
higher than that of the vessels used in the study (142 kW). The same fleet segment in the North Sea 
counted eight vessels (size range 18-32 m, power: 139-681 kW), and so some vessels operated in 
both geographical areas. Of these, only one vessel (18m, 139 kW) used mesh size smaller than 120 
mm (Figure 6 and Figure 7). All eight vessels used mesh size equal to or above 120 mm (mean: 20.3 
m, 236 kw).  
 
Most of the SDN fishery targeting DEF was conducted with >120 mm mesh size. The fishery in Skag-
errak occurs year-round, while in the North Sea it occurs mainly from March-November (Figure 8). 
The largest catches occurred from May to October in both areas. The proportion of unwanted catch of 
plaice varied between months but was on average 8% in volume in Skagerrak and 1% in the North 
Sea (data from the Data Collection Framework database). 
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Figure 7. Frequency distribution of the vessel power of the Danish seines using meshes smaller than 120 
mm (left) and 120 mm or larger meshes (right) for the fleet operating in Skagerrak (blue) and North Sea 
(red). 

 

Figure 6. Frequency distribution of vessel size for Danish seiners using meshes smaller than 120 
mm (left) and 120 mm or larger meshes (right) for the fleet operating in Skagerrak (blue) and North 
Sea (red). 
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1.6.2. Bottom otter trawl fleet in Skagerrak (Case study 2) 
In Case study 2, discard survival of plaice caught with OTB was investigated in 2017-2018. The OTB 
fleet in the Mixed Crustacean Demersal (MCD) fishery in Skagerrak counted 102 vessels in the size 
range 11.00-19.99 m and power range 67-365 kW (2017, logbook database). The same fleet segment 
in the North Sea counted only 11 vessels (size and power ranges of 11.00-16.99 m and 126-365 kW, 
respectively; 2017, logbook database) (Figure 9 and Figure 10).  
Plaice and Nephrops were caught year-round both in the Skagerrak and the North Sea (Figure 11).  
In Skagerrak, the largest landings of plaice occurred in the autumn and winter. In the North Sea, the 
largest landings occurred in the summer but are all year round at least as large as in Skagerrak (Fig-
ure 11). Although discard ratios of plaice were usually higher for smaller mesh sizes, i.e., when target-
ing Nephrops in all seasons except for autumn in the Skagerrak (Figure 11), absolute numbers of dis-
carded plaice were usually higher when the proportion of plaice in the total catch is larger, i.e., using 
larger mesh sizes. The proportion of unwanted catch of plaice was on average 60.4% in volume with 
90-119 mm mesh size and 7.4% with >120 mm mesh in the Skagerrak, and 6.4% in volume with 90-
119 mm mesh size and 3.4% with >120 mm mesh in the North Sea (data from the Data Collection 
Framework database in the period 2015-2017). 
 
Fish and Nephrops were often caught on separate fishing operations. I.e., when Nephrops dominated 
the catch the proportion of plaice was low and vice versa (Figure 12). This should be highlighted as 
the presence of Nephrops in the catch can increase damages and therefore fish mortality (Karlsen et 
al., 2015). 
 

Figure 8. The total landed catch weight in tons (light grey) and landed catch weight of plaice in tons (dark 
grey) of the Danish seines using meshes smaller than 120 mm (left) and 120 mm or larger meshes (right) 
for the fleet operating in Skagerrak (upper panels) and North Sea (lower panels) in the period 2015-2017. 
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Figure 9. Number of Danish vessels in the OTB fleet by length category in m by area and mesh size (2017, 
logbook database). The dashed black line represents the length of the vessel used in the experiment 
(S84). In brackets in the legend is the average vessel length for each area and mesh size. 

Figure 10. Number of Danish vessels in the OTB fleet by power category in kW by area and mesh size 
(2017, logbook database). The dashed black line represents the power of the vessel used in the experi-
ment (S84). In brackets in the legend is the average vessel power for each area and mesh size. 
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Figure 11. Total landed catch in tons (light grey), plaice landed catch in tons (dark grey) and discard ratio 
(boxplot) by month for the Danish OTB fleet by area and mesh size (2015-2017, logbook database, Data 
Collection Framework database). 

Figure 12. Proportion of plaice and Nephrops in the total catch when targeting plaice (i.e., high proportion 
of plaice) and Nephrops (i.e., high proportion of Nephrops) by month for the Danish OTB fleet separated 
by area (2015-2017, logbook database). 
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1.6.3. Bottom otter trawl fleet in Western Baltic Sea (Case study 3) 
Case study 3 was investigating discard survival of plaice caught with OTB in the Western Baltic Sea in 
2020-2021. The Danish bottom trawl fleet operating in the Baltic Sea consisted of an average of 90 
vessels (range: 89-91) in 2017-2019 but decreased during the years, counting 61 vessels in 2021 
(Figure 13, Table 2). The vessels were allocated to the OTB_DEF metier as this was the gear type, 
they used the most (i.e., highest number of trips). In 2021, almost the entire fleet (97%; n = 59) con-
sisted of vessels shorter than 18 m (Figure 13). Only two vessels were larger. 
 
The vessels were fishing in ICES subdivisions 22-25 (Figure 13), with some vessels fishing in several 
of these areas. Furthermore, the same vessels may change between trawl gears, e.g., change mesh 
size or alternate between the Bacoma and T90 gear designs. Both the Bacoma and T90 designs were 
used in the fishery (Figure 15). The extent of the fishery decreased during the period 2017-2021 (Fig-
ure 15). 
 

 

Figure 13. The Danish fleet of otter trawlers that operated in ICES subdivisions 22-26 of the Baltic Sea in 
the period 2017-2021 (upper panel), and the distribution of these vessels in different length groups (lower 
panel). 

 
The Danish demersal fishery with active gears in the Baltic is a mixed species fishery with few domi-
nating species; cod (Gadus morhua), plaice, flounder (Platichtys flesus), and dab. The fleet of active 
gears includes four seine vessels (see 1.6.4). Table 2 gives a summary of the fishing fleet, including 
landings, discards, and discard ratios. The main target species in the fishery has been cod with plaice 
as an important bycatch species. 
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Figure 14. Distribution of the OTB fleet (n = 61) in 2021 given for each vessel length group in subdivisions 
22-25; the vessels were allocated to the area in which they have conducted most of their trips. 

 

 

Figure 15. VMS data from 2017-2021 (top left to bottom right) for trawl vessels that have fished with gears 
>100 mm mesh size in ICES subdivisions 24-25 in the Baltic Sea. Bacoma (red): <115 mm mesh size. T90 
(blue): ≥ 115 mm mesh size.”  
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Table 2. Summary of the Danish fishery in the Baltic. Average (range) landings and discards (kg) are given for plaice from observer data for 2021.  

Country 

Exemption applied for Fishery Landings and discards Evidence 

Species Area Gear* Season Status 
Species as 
bycatch or 

target 

No. of 
vessels** Season Catch com-

position 

No. of 
observer 

trips 

Landings 
(kg) 

Discards 
(kg) 

Discard 
rate (%) 

Status of 
the 

evidence 

DK Plaice 22-
25 OTB_DEF Nov-Apr New ex-

emption 
Target and by-

catch 61 

Quarter 
1-4 

(Q1+4: 
74%) 

Mix of fish 
(mainly cod, 
plaice, dab, 

and flounder) 

72 89 
(3-246) 

40 
(0.2-403) 

31 
(8-62) 

New 
evidence 

DK Plaice 22-
25 SDN_DEF Nov-Apr New ex-

emption 
Target and by-

catch 3 

Quarter 
1-2,4 

(Q1+4: 
85%) 

Mix of fish 
(mainly cod, 
plaice, dab, 

and flounder) 
and inverte-
brates (spe-

cies not spec-
ified) 

8 74 
(37-161) 

12 
(2-20) 

14 
(6-11) 

New 
evidence 

DK Plaice 22-
25 SCC_DEF Nov-Apr New ex-

emption 
Target and by-

catch 1 

Quarter 
1-2 
(Q1: 
38%) 

Mix of fish 
(mainly 

plaice, and 
flounder) 

12 18 
(7-35) 

13 
(1-38) 

41 
(15-52) 

New 
evidence 

*Gears limited to those used to catch species for human consumption. 

**Numbers are from FDI-data (Fisheries Dependent Information). The vessels are allocated to the gear type they use the most (i.e., highest number of trips). 
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In the last few years, the conditions for the Baltic Sea fishery have changed dramatically. The low 
TACs due to the poor cod status both in western (subdivision 22-24) and eastern (subdivision 24-32) 
Baltic (ICES, 2021a, b) is expected to introduce a transition from targeting roundfish to targeting 
plaice and other flatfish if the fish condition is good under the new environmental conditions. The TAC 
on plaice is shared among four Member States. Denmark holds 72%, Poland 15%, Germany 8%, and 
Sweden 5%. The fishery targeting plaice takes place during the months of low sea temperatures, i.e., 
November to April. In other parts of the year, plaice are mainly caught as bycatch by the trawl fleet. 
 
With the reduction in number of vessels (Figure 13 for trawlers and Figure 20 for seiners), the total 
number of fishing days and the size of the total landings has reduced in the period 2017 to 2021 (Fig-
ure 16). However, the landings of plaice have been stable (Figure 16). The vessels in the length 
group from 15 m to smaller than 18 m (15-<18 m) have the highest annual total landings as they also 
have many fishing days (Figure 17). Vessels that are 18 m or longer have smaller annual total land-
ings and a small number of fishing days. The largest landings of plaice were also provided by vessels 
in the length group 15-<18 m (Figure 18). The landings in 2021 were smaller than in 2019 and 2020 
and were at the level of 2017 landings. When corrected for the number of fishing days, the plaice 
landings of vessels in the length group 15-<18 m were larger or comparable to larger vessels in four 
of the five last years (in 2019 vessels in the length group 18-<24 m had larger plaice landings per fish-
ing day). 
 
The fishing vessel used to obtain the survival rates of plaice was 15.7 m long and represented well 
both the smaller and the larger vessels in the fishing fleet using active gears.  
 
In 2021, the Danish fleet mostly landed in plaice in ICES Subdivisions 22 and 24, to a lesser degree 
in Subdivision 23 and almost nothing in Subdivision 25 (Figure 19).  
 

 
Figure 16. Trend in annual total landings (blue line), and annual landings of plaice (red line) for the Dan-
ish fleet using active gears as well as the number of fishing days (grey line) in 2017-2021. 
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Figure 17. Distribution of total landings (upper panel) and fishing days (lower panel) by vessel length 
group for 2017-2021. 

 

 

Figure 18. Annual landings of plaice (upper panel) and landings corrected for the number of fishing days 
(lower panel) by vessel length group in 2017-2021. 
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Figure 19. Geographic distribution in ICES Subdivision 22-25 of the annual landings of plaice (upper 
panel) and landings corrected for the number of fishing days (lower panel) by vessel length group in 
2021. 

 
1.6.4. Danish seine fleet in Western Baltic (for exemption request) 
There was not conduced any discard survival study with seines in the Baltic Sea. Based on the higher 
survival rates obtained in Skagerrak with Danish seine (Noack et al., 2020), it was assumed that it 
would be possible to obtain at least the same results as for the bottom otter trawl. The Danish fleet of 
seine vessels in ICES Subdivision 22-25 was small counting only three Danish seines and one Scot-
tish seine in 2021 (Figure 20, Table 2). This fleet was comparable to the trawl fleet in terms of vessel 
characteristics and catch compositions. The seiners fished mostly in subdivisions 22 and 24 (Figure 
21). According to logbook data, the fleet was fishing in the first, second, and fourth quarters of the 
year and their average catch weights of plaice (landed and discard) were lower than that for trawls 
(Table 2). 
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Figure 20. The Danish fleet of seiners (SDN and SSC) that operated in ICES subareas 22-26 of the Baltic 
Sea in the period 2017-2021 (upper panel), and the distribution of these vessels in different length groups 
(lower panel). 

 

 

Figure 21. Distribution of the fleet seiners (SDN and SSC, n = 4) of 2021 in subdivisions 22-25 when the 
vessels are allocated to the area in which they have conducted most of their trips. 
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2. Estimating discard survival 

Discard survival estimates were made for plaice under the MCRS of 27 cm in Skagerrak (Case study 
1 and 2), and 25 cm in the Western Baltic Sea (Case study 3).  
 
2.1. Guidelines for discard survival studies  
Discard survival studies are associated with several challenges related to the large knowledge gap in 
how the multitude of operational, environmental, and biological factors influence discard survival for 
different species, as well as the difficulties of observing individuals being discarded and obtaining true 
control individuals. The International Council for the Exploration of the Sea (ICES) expert groups 
Workshop on Methods for Estimating Discard Survival (WKMEDS8) and Working Group on Methods 
for Estimating Discard Survival (WGMEDS9) have established guidelines for how to best design and 
conduct discard survival studies obtain valid discard survival estimates (Breen and Catchpole, 2021). 
Some estimates have been published for different species and fisheries across EU member states 
(Supplementary material A). The regulation requires to consider the characteristics of the gear and 
the fishing practices. Indeed, the capturing process by the fishing gear, handling practice at the sur-
face and onboard, and release back to the water vary between vessels and fisheries. Also, the array 
of stressors and potentially injurious events that fish are exposed to are likely to give species-specific 
responses that will affect their survival potential during the discarding process. Stressors can be bio-
logical, (e.g., species, size, age, physical condition, occurrence of injuries), environmental (e.g., tem-
perature, depth, light conditions), or technical (e.g., fishing method, catch size and composition, han-
dling practices, air exposure).  
 
When assessing mortality, DTU Aqua used the captive observation method. This technique isolates 
the captive population from their natural predators, so it does not account for any predation effects on 
discard survival (ICES, 2014), including sea birds that feed on fish that are discarded. Accounting for 
predation usually requires a tagging study that has other limitations (e.g., effect of tagging and uncer-
tainties in estimating discard survival rates, low sampling size; ICES, 2014). There is to our 
knowledge no available data on how vulnerable fish are to predation in general, and relative to their 
vitality in particular. It is therefore agreed that the up-to-standards methodology currently used in all 
European studies for estimating discard survival might overestimate discard survival by not account-
ing for the potential effect of predation. On the other end, these studies also tend to underestimate 
discard survival due to minor transportation/captivity effects. These limitations are inherent to the 
choice of the method. 
 
2.2. Representative vessels and gears 
The vessels and fishing gears used to collect the discard survival rates were chosen in collaboration 
with the Danish fishermen organization to represent as much as possible the commercial practices of 
the fleet. 
 
Plaice was caught on commercial fishing grounds with both sandy and muddy bottoms (flat soft). The 
choice of fishing ground is greatly influenced by (i) proximity to the holding facility so that any negative 
effect of fish transportation is limited, and (ii) fishing at commercial sites expected to represent the 
most stressful conditions for plaice, e.g., lower salinity, occurrence of anoxic areas, and high density 
of flounder in the catch, so that the observed survival rate can be considered conservative. Ultimately, 

 
8 https://www.ices.dk/community/groups/Archive%20for%20Community%20pages/WKMEDS.aspx 
9 https://www.ices.dk/community/groups/Archive%20for%20Community%20pages/WGMEDS.aspx 
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the choice of fishing grounds was made by the fishers in agreement with the scientists. Slight differ-
ences between fishing grounds may happen due to the fishing season. 
 
The fishers handled the catch following commercial practices, but these will vary between crew mem-
bers and vessels.  
 
Air exposure is in close relation to sorting time. The sorting times during the experimental trials were 
within commercial practices, as discussed with the crew and the DFPO. There is no data available on 
the sorting times at the fleet level from which we could assess the proportion of hauls with sorting 
times within the range of sorting times included in our study. The sorting time depends on catch 
weight (and thus also vessel size), catch composition, and crew size onboard the vessel.  
 
If we take the example of Case study 2, experience from DTU-Aqua observers at sea programme 
suggests that in commercial conditions, sorting time is up to 1 h when plaice is the main target spe-
cies and up to 2.5 h when Nephrops is the main target species. A proxy for sorting time is catch 
weight. For hauls, conducted between 2015 and 2017 in the Skagerrak, the average catch weight per 
haul for trawlers using mesh sizes ≥120 mm (i.e., targeting plaice or round fish) was 674 (53-2957) kg 
(Table 3). For trawlers using mesh sizes <120 mm (targeting Nephrops), it was 559 (121-2236) kg 
(Table 3), i.e., catches of our experiment are within the range of these values. 

Table 3. Characteristics of commercial hauls conducted between 2015 and 2017 (Data Collection Frame-
work database). Values shown as mean (min-max). 

Area Mesh size Haul duration (min) Catch weight (kg) Length of plaice discarded (cm) 

Skagerrak 
<120 mm 248 (142-300) 559 (121-2236) 23 (11-37) 
≥120 mm 215 (75-300) 674 (53-2957) 25 (13-39) 

North Sea 
<120 mm 296 (290-299) 985 (226-1932) 26 (18-40) 
≥120 mm 258 (34-300) 1643 (175-4949) 26 (17-39) 

 

2.3. Selection of individuals 
Handling and assessments were done according to ICES WKMEDS guidelines (ICES, 2014). All bio-
logical and operational factors of the experiment were representative of commercial practices in Dan-
ish waters and sampled plaice were representative of the biological conditions at the time of the ex-
periment, i.e., in line with the length distribution of the fish discarded in the fishery. The catch was 
hauled on deck, emptied into the pounder, and sorted by the crew according to normal commercial 
practices (Figure 22). Fish were randomly sampled throughout the sorting process to cover the entire 
air exposure time of the catch sorting. In total, 30-40 fish per haul were assessed for vitality, meas-
ured in length, and tagged for individual recognition. 
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Figure 22. The collection of plaice individuals in Skagerrak for captive observation in the holding facility.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23. Survival unit to hold fish onboard the vessel (top) and transportation tank to the holding facil-
ity with oxygen supply (left and right).  
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Fish were stored in custom-made survival units to minimize the effects of handling, holding and trans-
portation on mortality (Figure 23). The survival units were continuously supplied with running seawater 
whilst oxygen and temperature were monitored. 
 
2.4. Captive observation 
Fish were transported to nearby holding facilities (Figure 23) and transferred into 1x1m tanks in a 
common garden set-up to prevent a tank-effect on mortality (Figure 24). The tanks had a semi-circu-
lated water supply, and the bottom was covered with a 2 cm sand layer. For 14 days, mortality was 
assessed, and water parameters were monitored. After the first week, the fish were fed each day. 
 

 

Figure 24. Facility with three lines of eight tanks (left) with a sandy bottom (right). 

Two weeks are usually considered sufficient to observe all delayed mortalities resulting from capture 
and handling without adding additional stress. This was set out in Yochum et al. (2015) as a general 
principle and verified in previous observations on plaice by Uhlmann et al. (2016) and van der Reijden 
et al. (2017). 
 
Due to space limitations during transport and holding on land, repetition of the experiment allowed 
collecting a higher number of individuals to increase the robustness of the survival estimates.  
 
2.5. Controls 
The control group are subjected to observation-induced effects, whereas the experimental group are 
subjected to observation-induced and treatment-induced effects. Currently, no knowledge exists on 
the interaction between observation-induced and treatment-induced effects (Breen and Catchpole, 
2021). It cannot be assumed that there is a simple, predictable relationship between the two. Individu-
als subjected to treatment-induced effects are more likely to be sensitive to additional observation-
induced stressors such as temperatures under the optimal range compared to control individuals sub-
jected to observation-induced effects only. Controls can be used to control for the effect of handling, 
assessing, transporting, and holding the fish, i.e., all the experimental steps that would take place af-
ter the fish would normally be discarded in commercial fisheries. If caught prior to the experiment, 
controls can be acclimatized and fed ad libitum after a week in captivity. 
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In Skagerrak (Case study 1 and 2), plaice in control groups “land” and “acclim.” were caught prior to 
the study using the research trawler R/V Havfisken (Figure 25). These fish were allowed to acclima-
tise before inclusion in the study. Control group “land” was used to control for the land-based holding 
facilities. Plaice in control group “acclim.” were brought onboard the commercial vessel, and thus un-
derwent the transportation to and from the fishing ground, and vitality assessment, length measure-
ment and tagging. This group controlled for transport and assessment when held up against control 
group “land”. Plaice in control group “trawl” were caught with the commercial trawler (short hauls) and 
entered the experiment without acclimatisation. This group controlled for the same as control group 
“acclim.” in addition to the fishing process and commercial handling. A fourth control group was added 
during the winter sub-cruises to disentangle the effects of transportation and fish assessment. Plaice 
in the control group “land+tag” were caught by Havfisken and acclimatized beforehand, and experi-
enced the assessment and tagging procedure, but underwent no transportation process.  
 

 

Figure 25. Overview of four types of Control Groups (CG) (Savina et al. 2019). 

 
The survival of the four control groups were high, but there might be some influence of transportation 
on survival (Table 4).  
 
In the Western Baltic, a pilot study in the autumn showed high mortality even for short- haul durations, 
so we did not use fish caught on the day of the sea trial as controls. Control fish were primarily 
sourced by the control fish used in a pilot study in the autumn and caught by the T90 trawl, as well as 
fish from trammel nets (250 m long with 70 mm mesh size) soaked for 24 hours. Control fish were not 
tagged. These fish were representative of the subject population group and controlled for the condi-
tions in the holding facility. 
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Table 4. Survival of the control groups, separated by season and target species. 

Season Target Control group Number of individuals Observed survival 

Summer  Plaice  

Control 1 (land)  50 1.00 

Control 2 (HV)  60 0.92 

Control 3 (S84)  60 0.87 

Winter  

Nephrops  

Control 1 (land)  16 1.00 

Control 2 (HV)  10 1.00 

Control 3 (S84)  10 1.00 

Control 4 (land+tag)  16 0.94 

Plaice  

Control 1 (land)  10 1.00 

Control 2 (HV)  10 1.00 

Control 3 (S84)  16 1.00 

Control 4 (land+tag)  16 1.00 

 

2.6. Tagging 
The individuals included in the investigation of survival were tagged with a PIT-tag. This relatively 
small tag (12 mm) was inserted in the muscle behind the dorsal side of the head on the pigmented 
side of the fish using a needle (Figure 26). The tag contained an ID number and was used to keep 
track of each individual throughout the study. Naturally, this procedure differs from that when fish are 
discarded during commercial fishery and could potentially add extra stress and affect mortality. In par-
ticular, there was a concern that additional stress could affect survival for individuals that have been 
subject to long air exposure times.  

 
Figure 26. Indication of PIT tag location (placement as shallow as possible under the skin). 

 
From 14 hauls (seven 180 min hauls and seven 15 min hauls) conducted with R/V Havfisken in the 
Skagerrak, a total 329 plaice were collected for investigating the effect of tagging on survival. Of the 
individuals’ samples, 217 plaice (66%) were tagged. The fish were caught at an average depth rang-
ing from 26.5-51.0 m. Catch sizes ranged from 10-34 kg for the 15 min hauls and 130-726 for the 180 
min hauls. Survival was assessed for air exposures 0 min, 45 min and 90 min. There was no effect of 
tagging, and no effect of air exposure on the tagging effect.   
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Figure 27. Kaplan Meier survival curves for plaice. 

 
2.7. Data analysis 
The general idea of the survival rates is to look at the proportion of individuals alive throughout time. 
This is the survival function and looks like a curve that:  

(1) decrease with time, due to the individuals that die because they were affected by the capture 
and handling process. 

(2) eventually levels off, because all the affected individuals died, leaving only alive individuals 
that were unaffected by the fishing process. 

The post-release survival probability is the proportion of individuals alive at the end of the captivity ob-
servation when mortality has levelled off (at asymptote).  
 
Depending on the objectives of the investigation there are different ways to analyse survival data. If 
one is interested in the mechanisms underlying the shape of the survival curve over time, modelling 
the survival curve is of relevance. However, if one is mostly interested in delivering a survival probabil-
ity in each given fishery for management purpose, analysing the survival rate at asymptote might be 
enough.  
 
In our studies, we used either non-parametric (Kaplan-Meier, double bootstrap) or parametric (Weibull 
mixture distribution model, logistic regression) approaches (ICES, 2019). The advantage of a non-par-
ametric approach is that very few assumptions are made, whereas parametric models allow not only a 
description of the observed data but also make predictions for the fishery, including sources of uncer-
tainties due to the captivity conditions or differences between hauls for example, but also make infer-
ences on the mechanisms underlying the shape of the curve, e.g., how air exposure is influencing the 
survival for example. 
 
2.7.1. Non-parametric Kaplan-Meier curve 
The non-parametric Kaplan-Meier curve gives the proportion of observed individuals alive at each 
time point during captivity (Benoît et al., 2012; Kaplan and Meier, 1958).  
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The Kaplan-Meier can be used to estimate the probability of survival at a given time point but is 
mostly useful for (1) exploratory data analysis (visualizing how the proportion of observed alive indi-
viduals changes with time), and (2) identifying the parametric models to use for further data analysis.  
 
Used in the project for exploratory purposes, i.e., to check that a mortality asymptote was reached, 
and explore the effects of the operational, environmental, and biological factors. 
 

2.7.2. Parametric Weibull mixture distribution model 
A parametric approach makes it possible to model the survival curve in the same manner as the one 
represented by the Kaplan-Meier, but with known parameters. This is the case of the parametric 
Weibull mixture distribution model that we used, which can be defined using three parameters.  
 
Used in the project for estimating survival rates with confidence intervals (accounting for variability 
within and between hauls) and quantifying the effects of operational, technical, environmental, and 
biological parameters; the log-normal survival model showed to be a successful alternative in the 
Bayesian approach. 
 
2.7.3. Non-parametric double bootstrap at asymptote 
The double bootstrap method is well-established for evaluating fishing gear selectivity and catch effi-
ciency (Herrmann et al., 2012; Wienbeck et al., 2014). It accounts for within and between-haul varia-
tion in the obtained survival probability by selecting fish and hauls with replacement from the pool of 
fish and hauls during each bootstrap repetition.   
 
Used in the project to compare survival probabilities between seasons, target species and catch com-
ponents after 14 days of observation averaged over hauls. 
 

2.7.4. Logistic regression model at asymptote 
One may also model mortality at asymptote at the fish level with 0 for alive and 1 for dead as the re-
sponse variable (binomial).  
 
Used in the project for optimisation of the vitality indicators to predict survival. 
 

 Parametric Non-parametric 

Survival over time (survival 
curve) Weibull mixture Kaplan-Meier 

Survival probability at asymptote Logistic regression Double bootstrap 
 

2.7.5. Meta-analysis 
Meta-analysis is the statistical combination of results from several different studies to create a sum-
mary estimate (with its confidence interval) that is based on an increased statistical power compared 
with each of the studies separately (Hoffman, 2015). Indeed, pooling information from multiple discard 
survival studies can identify large-scale survival patterns, improve understanding of the discard sur-
vival variability, and provide more accurate survival estimates. The objective of doing a meta-analysis 
is to provide managers with a reliable estimate of discards survival with uncertainty estimates and the 
effects of explanatory factors (e.g., gear, season, air exposure) by means of a systematic synthesis 
and statistical analysis of a collection of previous studies (ICES, 2015).  
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Discard survival has been studied in many different fisheries. However, each study has focused on 
restrained conditions in agreement with STECF recommendations (STECF, 2013). The economic cost 
of conducting these experiments limits the sampling to a selection of the variety of conditions that can 
occur, even in a fishery-specific context, despite that operational, environmental, and biological condi-
tions have been shown to affect discard survival, at both individual and haul levels (ICES, 2014). This 
methodological heterogeneity is a challenge when conducting meta-analysis and has thus required 
the development of a framework for a meta-regression (hierarchical mixed effects) that accounts for 
differences in experimental design, quality, and context specificity between individual studies to pro-
duce reliable inferences.  
 
All the work related to the meta-analysis in this project was done as part of the International Council 
for the Exploration of the Sea WKMEDS and WGMEDS.  
 
2.8. Case studies on discard survival of plaice 
2.8.1. Case study 1: Survival of plaice caught with Danish seine in Skagerrak 
The survival rate and vitality of plaice under the MCRS of 27 cm in Skagerrak were investigated dur-
ing August-October 2017 (Figure 28). This is when the water temperature is at its highest during the 
year and thus represents a worst-case scenario for survival. The commercial vessel used in the study 
was chosen in collaboration with DFPO and the local fishers association in Hirtshals. The seiner S15 
‘Vera-Marie’ (vessel length 16.1 m, vessel power 142 kW) used a 125 mm codend representative for 
the demersal fisheries (DEF) with Danish seine fisheries (Figure 28). 
 

Figure 28. Left: Data collection at commercial fishing grounds in Skagerrak. The droplet-shaped tracks 
were hauls from the Danish seiner. The three sub-cruises were conducted in August, September, and Oc-
tober 2017. Right: The commercial vessel used in the study to represent the Danish seine fleet in the de-
mersal mixed fisheries. 
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2.8.2. Case study 2: Survival of plaice caught with otter trawl in Skagerrak 
Plaice and Nephrops are caught year-round both in the Skagerrak and the North Sea. However, fish 
and Nephrops are usually caught on separate fishing operations, which should be highlighted as the 
presence of Nephrops in the catch can increase damages and therefore fish mortality (Karlsen et al. 
2015), i.e., when Nephrops dominate the catch, the proportion of plaice is low and vice versa. 
 
The survival rate and vitality of plaice under the MCRS of 27 cm in the trawl fishery in Skagerrak was 
investigated during summer (August, September, and October) 2017 and winter (March and April) 
2018. The study was done onboard the commercial vessel S84 ‘Ida Katrine’ chosen in collaboration 
with the Danish Fishermen Organisation DFPO (Figure 29). The trawler represents the mixed demer-
sal fishery targeting fish (including plaice and Nephrops), with a length of 15.1m and a power of 
221kW, working in a twin rig.  
 

 

In the summer, two commercial 90 mm diamond codends representative for the mixed demersal fish-
ery were used to target plaice. A 90 mm mesh size was chosen to account for the ‘worst case sce-
nario’, but fishers commonly use a 120mm diamond codend instead when targeting plaice. Together 
with improving size selectivity, a larger mesh size in the codend is expected to reduce potential dam-
age in fish and therefore improve discard survival.  
 
In the winter, in addition to the standard commercial 90 mm diamond codend, a modified experimental 
codend was tested (Figure 30). This horizontally divided codend with 120 mm square mesh upper 
compartment and 60 mm square mesh lower compartment had previously been used to separate fish 
from Nephrops (Karlsen et al., 2015), and therefore seemed promising to reduce catch damage by 
limiting frictions in the codend. In the winter, half of the hauls targeted plaice and half of the hauls tar-
geted Nephrops.   
 

Figure 29. The commercial vessel used in the study to represent the bottom otter trawl fleet in the 
demersal mixed fisheries. 
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Figure 30. A conceptual drawing of the horizontally divided codend used as one of the codends in the 
twin-rig of the trawler in the winter.  

 
Figure 31. Data collection at commercial fishing grounds in Skagerrak. The five sub-cruises were con-
ducted in the summer (August, September, and October 2017, on the left) and the winter (March and April 
2018, on the right). 

 
2.8.3. Case study 3: Survival of plaice caught with otter trawl in the Baltic Sea 
Sea trials were conducted onboard the commercial trawler R3 “Orion” (vessel length 15.7 m, vessel 
power 217 kW, vessel tonnage 39.6 t, Figure 32) in the winter 2021 fishing with T90 and Bacoma 
(Figure 33). For each gear type, two identical codends were fished in a twin rig. 
 

 

 

 

 

 

 

 

 

 

Figure 32. The vessel used for the sea trial R3 Orion. 
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Figure 33. T90 (upper) and Bacoma (lower) codends © Thünen Institut. 

 

 

 

Figure 34. Data collection at commercial fishing grounds in the Baltic: red are hauls for collecting control 
fish (with acclimatation), green are hauls of short duration also for collecting control fish (without accli-
mation), blue are hauls where we collected stomach and proxy data, purple are hauls where we collected 
experimental fish for captive observations. 
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Figure 35. Handling of the catch onboard the vessel: codends were emptied in the hopper (upper left) 
supplied with running water (upper middle), from where the individuals were delivered to the sorting ta-
ble (lower left) and sorted by the fishers (upper right) before sampling for plaice below the MCRS of 25 
cm in a 90L tub filled with water (lower right).    
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3. Stressors affecting discard survival estimates 

The variability in discard survival estimates can be high, even within a single study (Breen and Catch-
pole, 2021). The variability may be related to several factors withing a range of operational, environ-
mental, and biological factors influencing discard survival. To improve our understanding of how dis-
card survival is affected, the effect of several factors has been studied in relation to the different Case 
studies (Table 5). In this section, the results from these investigations are presented. 
 
Table 5. Operational, environmental, and biological parameters investigated in the different Case studies. 

 Parameter Data source Case study 

Operational 

Haul duration (h) Start and stop time (wheel-
house) All 

Total catch weight (kg) 
Pounder weight, else esti-
mated by the skipper and 

scientist 
All 

Air exposure (min) Start and stop time for each 
fish assessed (deck) All 

Environmental 

Depth (m) “CTD” logger (Star-Oddi) 
underwater (gear) All 

Salinity (ppt) “CTD” logger (Star-Oddi) 
underwater (gear) 3 (Baltic) 

Water temperature (°C) “CTD” logger (Star-Oddi) 
underwater (gear) All 

Dissolved oxygen (mg/l) “miniDOT” logger (PME) 
underwater (gear) 3 (Baltic) 

Air temperature (°C) “Handy Polaris 2” device 
(Oxyguard) on deck All 

Biological 

Fish length (cm) Measuring board All 
Pre-capture oxygen level Fish stomachs 3 (Baltic) 
Intestinal mollusc shells Fish stomachs 3 (Baltic) 

Physiological stress Blood, muscle, brain 2 (Skagerrak) 

Hypoxia Respirometer, blood, mus-
cle 3 (Baltic) 

 

3.1. Operational variables 
3.1.1. Gear type (Case study 1 and Case study 2) 
Based on comparison in summer in Skagerrak, the mean survival rate for undersized plaice was 78% 
(95% CI: 67%-87%) for SDN and 44% (37%-52%) for OTB T90. 
 
3.1.2. Target species (Case study 2) 
Trawlers targeting plaice usually catch high proportions of plaice and small proportions of Nephrops, 
and vice versa. Catches of plaice cannot be circumvented entirely when targeting Nephrops. Survival 
was significantly higher when targeting plaice than Nephrops (Figure 36, 
Table 6). Differences in survival of discarded plaice for different catch compositions were also found in 
the Belgian beam trawl fishery for plaice where immediate on-board mortality was positively associ-
ated with physical injury, the total weights of catches and stones, and the proportion of injury-inducing 
elements among the unwanted catch (Uhlmann et al., 2023).  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nephrops
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Figure 36. Observed survival probability at asymptote after 14 days with 95% confidence interval of un-
dersized plaice discard for a) season, i.e., summer vs. winter; b) target species, i.e., Nephrops vs plaice. 

 

Table 6. Estimated overall survival rates in % with 95%-confidence interval (* including uncertainty from 
the haul selection and the conditions of the captivity experiment when the chosen covariates did not de-
pend on the fish selection, ** including uncertainty from the fish selection, the haul selection and the 
conditions of the captivity experiment) of undersized plaice in the Skagerrak for the OTB targeting plaice 
and Nephrops in the summer and winter for the standard commercial codend. 

Target Plaice Nephrops 
Summer 44 (37-52*, n=333) - 
Winter 75 (67-83**, n=142) 41 (28-57*, n=123) 

standard codend vs. upper and lower compartments of the divided codend. 

3.1.3. Gear design 

Effect of catch separation on discard survival (Case study 2) 
Separating fish from Nephrops using a horizontally divided codend can reduce catch-related damages 
to the fish such as scale loss (Karlsen et al., 2015), but also significantly increased the survival of the 
undersized plaice in the upper compartment when targeting Nephrops.  
 
The upper compartment of the modified codend (120 mm square) showed a better discard survival, 
but also less undersized (and commercial) individuals due to a higher selectivity. 
 
When using the divided codend, the catch is partly sorted during fishing and sorting time on board 
could potentially be reduced. This is a major advantage that can be used to reduce discard mortality, 
as air exposure is a key factor affecting survival (Morfin et al., 2017a; van der Reijden et al., 2017). 
 
We expect significant differences in survival between the compartments of the divided codend when 
targeting Nephrops in the summer as well, but the size of effect may be different to that observed in 
the winter.  
 
T90 versus BACOMA (Case study 3) 
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T90 was found to have the lowest survival rate compared to BACOMA during the pilot trial in autumn 
2020 in the Baltic (Table 7). 
 
Table 7. Immediate, delayed, and total survival rate in % for the experimental fish (T90 and Bacoma) in 
the autumn 2020 (Baltic). 

 Immediate Delayed Total 
T90 74.1 [65.2-83.2] (n=260) 26.5 [8.5-54.5] (n=125) 25.2 [7.4-54.5] (n=171) 

Bacoma 63.2 [55.0-72.2] (n=273) 21.6 [6.9-40.8] (n=129) 14.4 [3.5-29.0] (n=228) 

3.1.4. Air exposure (Case study 2) 

Air exposure is in close relation to sorting time. The sorting times during the experimental trials were 
within commercial practices, as discussed with the crew and the DFPO. There is no data available on 
the sorting times at the fleet level from which we could assess the proportion of hauls with sorting 
times within the range of sorting times included in our study. The sorting time depends on catch 
weight (and thus also vessel size) and composition, and the size of the crew onboard the vessel. Ex-
perience from DTU-Aqua observers at sea program suggests that in commercial conditions, sorting 
time is up to 1 h depending on catch weight when plaice is the main target species, and up to 2.5 h 
when Nephrops is the main target species. A proxy for sorting time is ‘catch weight’. For hauls, con-
ducted between 2015 and 2017 in the Skagerrak, the average catch weight per haul for trawlers using 
mesh sizes ≥120 mm (i.e., targeting plaice or round fish) was 674 (53-2957) kg. For trawlers using 
mesh sizes <120 mm (targeting Nephrops), it was 559 (121-2236) kg, i.e., catches of our experiment 
are within the range of these values.  
 
In the summer when targeting plaice, discard survival was affected by air exposure duration (Table 8). 
This was not observed in winter, also when targeting Nephrops, as discard survival was primarily 
driven by damages/loss of reflexes in an overall cold/mild environment. The length range of the sam-
pled fish was limited in the summer but larger in the winter, explaining why this biological factor had 
an effect in the winter only (Table 8). 
 
Table 8. Effects of operational, environmental, and biological covariates on the parameters of the fitted 
survival function and mixture proportion for discard survival of undersized plaice caught by a Danish ot-
ter trawler targeting plaice and Nephrops with a standard commercial codend in the summer and winter. 
Only the mixture proportion affects the overall survival estimate (as observed at the end of the experi-
ment when an asymptote is reached). 

 Target Season Survival function (α, γ) Mixture proportion (π) 

Plaice 
Summer - Operational: Air exposure 

Winter Operational: Sorting order 
Biological: Fish length Biological: Fish length 

Nephrops Winter Operational: Sorting order, fail due to harsh 
weather condition - 

 
Note the caution mentioned in the above section when comparing overall mean survival rates. Be-
cause overall survival rates estimated above are, for some, dependent on the number of observed 
fish for each level of the selected covariates, we also predicted survival rates for given values of the 
selected operational covariates independently, within the ranges of the experimental data, i.e., air ex-
posure from 0 to 62 min for OTB targeting plaice in the summer (Figure 37). 
 



Discard survival of undersized European plaice caught with towed fishing gears in Danish waters                                          48 

 

Figure 37. Discard survival as a function of air exposure (black) with 95% confidence intervals estimated 
by parametric bootstrap accounting for variability from the captivity experiment (grey) for undersized 
plaice caught by the OTB targeting plaice in the summer. 

 

3.2. Environmental variables 
3.2.1. Temperature (season) (Case study 2) 
In the Skagerrak, the largest landings of plaice take place in the autumn and winter. In the North Sea, 
the largest landings take place in the summer, but are all year round at least as big as in the Skager-
rak. 
 
Regarding the commercial standard codend (90mm diamond), the mean survival rate for undersized 
plaice was higher in the winter than in the summer, respectively 44% (95%-confidence interval: 37-52) 
and 75% (67%-83%) (Table 6, Figure 36). A lower survival at higher temperatures was observed in 
previous studies (Van der Reijden et al., 2017; Kraak et al., 2018; Schram et al., 2023). The mean 
survival rate for undersized plaice commercially caught when targeting Nephrops was lower than 
when targeting plaice, as observed in the winter, reaching survival rates similar to those when target-
ing plaice in the summer, i.e., 41% (28%-57%) ( 
Table 6). The larger amount of Nephrops in the catch caused more damages to the fish by friction in 
the codend, leading to higher mortalities. Caution must be made when doing direct comparisons. 
Mean discard survival (with uncertainty estimates) is limited by the conditions during the trials, espe-
cially by the factors found to affect the survival rates. 
 
Fish are ectotherm animals so when the temperature in the environment increases, the body tempera-
ture of the fish increases correspondingly. An increase in body temperature is followed by an increase 
in oxygen uptake and other biochemical reactions (Fry, 1971). This in turn contributes to a decline in 
physiological condition (Benoît et al. 2013), which contributed to a reduced probability of surviving the 
capture and release process.  
 
3.2.2. Oxygen (Case study 3)  
When assessing the high survival exemptions, STECF examines whether the study is designed to 
provide an estimate that is representative of the wider fishery, i.e., that the data is representative of 
the full range of operational and environmental conditions associated with the fishery. The oxygen 
conditions are worsening in all basins of the Baltic with an increase in the oxygen debt below the halo-
cline (HELCOM, 2023), and this is why we specifically focused on the effect of oxygen for the Baltic 
case study.  
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We documented the environmental conditions of the commercial fishing operations, e.g., water tem-
perature and oxygen conditions, based on in situ measurements by commercial fishers using a sensor 
on their trawl (vessels R3, R41, R254 and R419) and the available (2020) VMS and research 
cruise data (Figure 38).  
 
We have developed an overlap index between the fisheries (VMS data) and oxygen conditions at the 
seabed (oxygen data from previous research cruises and collected at the time of capture by the com-
mercial fishers).  

 

Figure 38. Fishery hauls (red dots), oxygen stations from the Baltic International Trawl survey (blue dots) 
and fishing stations with oxygen measurements from commercial fishers, all in 2020. Depth contours are 
derived from a high resolving bathymetric map produced by the institute for Baltic Sea research in 
Warnemünde. 

 
The fishing grounds were covered well by oxygen measurements from the BITS survey. The survey 
measurements were taken in February/March 2020, and we assumed the measured oxygen condi-
tions were representative for the conditions during fisheries. The measurements taken by the fisher-
men did not differ substantially from the survey measurements. The oxygen data were inspected and 
the measurements at the greatest depth per station were taken as oxygen concentration at the bot-
tom. Subsequently, the spatial measurements were linearly interpolated to derive a map of bottom ox-
ygen concentration (Figure 39). 
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Figure 39. Oxygen concentration (mL/L) at the seabed from BITS survey and fisher measurements. 

 
We extracted the oxygen conditions at every single trawl station from the VMS data from the contour 
plot of oxygen at the seabed. The resulting cumulative frequency distribution of oxygen concentra-
tions encountered at the fishing locations can be considered an overlap index for fishery and oxygen 
(Figure 40). 

 

Figure 40. Cumulative frequency distribution of encountered oxygen concentrations during bottom trawl 
fishing operations in 2020. 

90% of the trawls were conducted at oxygen concentrations greater than or equal to 6 ml/l. The corre-
sponding depth distribution of the fishery is shown in Figure 41. Here, more than 90% of all trawls 
were conducted at depths less than or equal to around 48 m.  
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Figure 41. Cumulative frequency distribution of trawling depth for the 2020 VMS data. 

 
We investigated the effect of dissolved oxygen level at capture on delayed plaice mortality. Oxygen 
levels were however related to seasons with lower levels in autumn than in winter (confounding fac-
tors). The seasonal effect was stronger than the oxygen effect, but it was not possible to further inves-
tigate the relationship between dissolved oxygen at capture and survival in the field.  
 
3.3. Biological variables 
3.3.1. Fish length (Case study 1, Case study 2) 
Previous studies have shown an additional effect of fish length on survival probability, which was 
therefore also tested. However, no effect of fish length was observed, which is in line with previous 
results from van der Rejden et al. (2017) on a similar size range (average fish length of 22.2 cm), sim-
ilar to the 23 cm length for the trawler and the 25 cm length for the seiner in the present study, with 
most fish just below MCRS). However, when larger length ranges (23–62 cm total length) have been 
studied, higher mortalities of smaller fish have been observed relative to larger fish (e.g., Revill et al., 
2013). 
 
3.3.2. Pre-capture oxygen and feeding environment (Case study 3) 
Plaice feed on a variety of invertebrates with different minimum requirements for oxygen content in 
the water. Information about the prey composition in their stomachs should therefore provide a dy-
namic picture of the oxygen environment of the plaice and not just the snapshot situation at catch. 
The prey information might thus provide a more realistic relationship between oxygen level experi-
enced by the plaice in a time window prior to capture and the survival rate of discarded plaice. The 
stomachs of undersized (i.e., discard) plaice were therefore sampled in in each of the two cruises in 
the Baltic Sea for analysis of prey composition in the stomachs. The aim was to relate the results from 
these analyses to the oxygen level at each trawl haul and the laboratory survival rate of discard-plaice 
sampled in the same hauls. 
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Stomachs with signs of regurgitation were discarded and replaced by non-empty stomachs without 
signs of regurgitation so that the fraction of stomachs with contents in the total sample was not under-

estimated. The stomachs were removed and frozen on board as soon 
as possible to prevent excessive digestion and deterioration of the 
content prior to laboratory analysis. A pair of tweezers was fixed at 
the anterior part of the esophagus and the esophagus/pharynx was 
thereafter cut in front of the tweezers to prevent loss of stomach con-
tents from the esophagus while removing the stomach from the body 
cavity (Figure 42). The esophagus was kept between the tweezers 
while the rest of the entrails were removed and until the stomach was 
bagged. The bagged material was frozen in one layer on a metal 
plate in the freezer on board and transferred to another freezer on 
Bornholm at harbour arrival. Finally, the stomachs were transferred in 
a cooling box with ice or cooling elements from Bornholm to Lyngby 
for laboratory analysis of the contents. The body lengths of all plaice 
collected for stomach analyses were measured, including fish with 
empty stomachs. 
 
The stomachs were defrosted and those with contents were weighed 
after removal of excessive visceral material outside the stomach. The 

content of the individual stomach was then emptied into a petri dish and the empty stomach weighed. 
The stomach content in the petri dish was identified to the lowest taxon possible. Each prey group 
was weighed or its contribution to the total stomach content mass was visually estimated. 
 
The feeding strategy and prey mass composition were examined. The feeding strategy was analysed 
using the modified Costello plot (Amundsen et al., 1996), where the prey-specific abundance (mass 
here) is depicted against the frequency of occurrence in the stomachs for each prey species/group 
(Figure 43). The prey-specific abundance is the fraction a prey type comprises of all prey types in only 
those stomachs that contain the actual prey. The positions of the individual prey in the plot provide 
information about their importance in the diet of plaice. The grouping of the prey in the plot indicates 
the food niche width as well as the inter- and intra-individual components of the niche width for the ex-
amined plaice population (e.g., whether the plaice are generalists or specialists – and if specialist: 
whether it is on the population or individual level). 

Figure 42. Sampling of plaice 
stomachs: the oesophagus 
was kept between the twee-
zers while the rest of the en-
trails were removed. 
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Figure 43. Modified Costello plot for prey obtained from sampled plaice stomachs in the autumn in the 
eastern Baltic Sea and at wintertime in the western Baltic Sea. The plaice were sampled at bottom condi-
tions of both moderate and severe hypoxia in the autumn, but only moderate hypoxia at wintertime. 

 
The relative contributions of the individual prey groups with each stomach standardized to 100% were 
used for the statistical analyses testing for differences in prey compositions between two groups of 
hauls from two areas or two contrasting oxygen conditions at the bottom are tested for statistical dif-
ferences (Supplementary material B). 
 
The identified prey is listed in Table 9 (grouped for statistical analyses). The sensitivity of the different 
prey groups to hypoxia increased toward the bottom of the list with Priapulus caudatus being far less 
sensitive (Rosenberg et al. 1991, Gogina et al. 2016, Haase et al. 2020).  
 
A large proportion of the stomachs evaluated to be with prey contents on board the ship showed to be 
empty when analyzed in the laboratory on land (Table 10). Due to the resulting low numbers in many 
hauls of stomachs with contents, it was therefore not possible to compare prey compositions from in-
dividual hauls statistically, and the haul data had to be grouped. Furthermore, the oxygen condition at 
the bottom was only contrasting in the autumn cruise (Table 10) with one group of hauls of moderate 
hypoxia and another one of severe hypoxia. All hauls from the winter cruise were of moderate hy-
poxia. More detailed basic data on the physio-chemical conditions are provided in Table B.1 in the 
Supplementary material.  
 
 
 
Table 9. Prey list as well as prey grouping for statistical analysis. The sensitivity to hypoxia increases 
towards the bottom of the table. 
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Identified prey Prey group 

Priapulis caudatus Priapulids 

Phyllodocid polychaetes Polychaetes 

Hydrobia sp. Gastropods 

Retusa umbilicata 
Abra alba Small bivalves 

Limecola balthica 
Arctica islandica Large bivalves 

Mya arenaria 
Mytilus sp. 
Gammarus sp. Amphipods 

Monoporeia affinis 
Mysids Mysids 

Diastylis rathkei Cumaceans 

Table 10. Number of sampled stomachs as well as temperature and oxygen content at the bottom for 
each haul. 

Date Haul Stomachs (n)* Temp.  Oxygen Depth 

 No. Total Empty 1 Empty 2 Analysed °C % sat. m 

Autumn (eastern Baltic Sea) 
13-10-2020   9 23   5 16   2   7.4 52 41 
13-10-2020 10 26   5 17   4   7.4 51 42 
13-10-2020 11 17   9   1   7   7.3 54 40 
13-10-2020 12 35 13 10 12   7.3 52 41 
13-10-2020 13 33 15   7 11   7.9 50 41 
20-10-2020 16 33 17   6 10   15.4†   36† 65 
21-10-2020 18 83 39 13 31 15.3 36 68 
24-10-2020 21 30 21   5   4 15.2 34 65 
25-10-2020 22 30 20   1   9 15.4 36 64 
25-10-2020 23 41 23   5 13 15.5 39 63 
Winter (western Baltic Sea) 
27-01-2021   1 41 21 17   3   8.1 64 45 
29-01-2021   6 37 10 17 10   7.8 69 42 
31-01-2021 11 27 14 13   0   n/a n/a n/a 
31-01-2021 12 26 14   9   3   7.4 63 43 
31-01-2021 13 53 24 15 14   7.4 63 43 
01-02-2021 14 48 24 24   0   n/a n/a n/a 
02-02-2021 17 50 25 25   0   n/a n/a n/a 
02-02-2021 18 38 18 13   7   6.1 82 45 
03-02-2021 20 59 31 26   2   6.7 72 42 

*’Empty 1’: stomachs evaluated to be empty on board the ship; ‘Empty 2’: additional stomachs appeared to be 
empty in the laboratory on land; ‘Analyzed’: stomachs with contents for prey composition analysis 

† Due to erroneous measurements, temperature and % oxygen saturation is calculated as the averages of the 
values from hauls 18–23 with similar depth. 

The plaice in the sampled areas can be considered individual specialists with most prey categories 
situated in the upper left corner of the modified Costello plot (Figure 43), which means that the 
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individual prey type is generally consumed by only a moderate part of the plaice and amounts to a 
significant part in the stomachs in which it occurs. 
 
Comparing all hauls from the autumn with those from the winter (top panels of Figure 44) it appears 
that there are fewer prey categories in wintertime (amphipods and mysids are missing), which is not 
surprising. It is also seen here that hypoxia-resistant priapulids are more common in stomachs from 
autumn. This is probable because a part of these stomachs comes from areas with severe hypoxia. 
 
However, comparing autumn stomachs from moderate hypoxia with autumn stomachs from severe 
hypoxia (bottom panels of Figure 44), it appears that the difference in feeding strategy is more com-
plex. The stomachs from plaice in areas with moderate hypoxia suggest a more generalized feeding 
strategy with more prey close to the diagonal line and a generally higher frequency of occurrence. 
This also includes the hypoxia-resistant priapulids that are common among the stomachs (~50%) sug-
gesting that plaice from these areas are feeding also in areas of severe hypoxia. Overall, the less hy-
poxic-resistant prey like amphipods and small bivalves from the moderate hypoxic areas are however 
more common in these stomachs than they are in those from the severely hypoxic areas. Also, the 
fraction comprised by the four most hypoxia-resistant prey (priapulids –> small bivalves) in the stom-
achs from the areas of severe hypoxia amounts to as much as 95% of the prey composition (Figure 
44), which contrasts with the other areas. 
 

 

Figure 44. Average prey composition (mass fractions made up by the individual prey types) for the four 
groups of sampled plaice stomachs. 

 

In accordance with the considerations provided above, the results from the bootstrapping procedure 
show that the prey compositions (Figure 44) obtained from all groups of stomachs are significantly dif-
ferent (Table 11). 
 
Table 11. Prey composition comparisons - results from the bootstrapping procedure. 

T1obs T1bst P1  T2obs T2bst P2 
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 95 % quantile    95% quantile  

Autumn (moderate & severe hypoxia) vs. winter (moderate hypoxia)  (n = 103; m = 39) 
0.4523 0.2099   0.001  0.0878 0.0521   0.004 

Autumn (moderate hypoxia) vs. winter (moderate hypoxia)  (n = 36; m = 39) 
0.8017 0.2477 <0.001  0.1720 0.0566 <0.001 

Autumn (moderate hypoxia) vs. autumn (severe hypoxia)  (n = 36; m = 67) 
0.5357 0.2256 <0.001  0.1115 0.0586   0.001 

 

So, the present data on stomach contents indicate that plaice are performing excursions between ar-
eas/depths of different levels of hypoxia. A part of them probably feeds in severe hypoxia and returns 
to moderate hypoxia/normoxia to digest and recover like it seems to be the case for cod in the eastern 
Baltic Sea (Neuenfeldt et al. 2009). Unfortunately, the sparse amount of data together with the poor 
condition of the prey in the sampled plaice stomachs did not allow a dynamic description of the tem-
poral feeding pattern and possible shuttling between the areas. More effort in a dedicated feeding 
study would probably reveal these dynamics. 
 
3.3.3. Hazard from intestinal mollusc shells 
An additional variable contributing to post-catch mortality may be damage of the intestine during the 
catch and sorting processes due to sharp shell fragments in situations where the plaice are feeding 
heavily on mussels. This has for example been observed in the Skagerrak, where plaice are binge 
feeding on razor clam in the period after spawning. Information on the amount of shell contents in the 
intestine should therefore contribute to a clarification of whether there is a relationship between heavy 
feeding on mussels and discard survival. 
 
The intestines of undersized (i.e., discard) plaice were therefore sampled in the winter cruise for ex-
amination of intestinal content of shells. An index of the shell content in the intestine was established 
for the winter cruise in the Baltic Sea to examine whether heavy feeding on mussels and snails affects 
the survival rate relating the index to the laboratory survival rate of discard-plaice sampled in the 
same hauls. The amount of shell material in the intestines was graded by the index Ishell: 0 - no 
shells; 1 - moderate number of shells; and 2 - the intestine is significantly expanded by shells.  
 
There was no visible relationship between survival and Ishell in the winter data. It does not necessarily 
mean that there was no effect, but we would need additional data to observe a potentially weak effect 
for survival rates with little contrast and limited data points (the data needs to be pooled by day to be 
able to compare the stomach hauls with the survival hauls and there were only 5 days where we 
could do so due to logistics constraints onboard).  
 
3.3.4. Physiological stress from capture (Case study 2) 
The capture of fishes entails a cascade of events leading to disturbances of their physiological equilib-
rium. Initially, fishes will attempt to evade capture by an escape response, in which they attempt to 
swim away from the fishing gear. If captured, the fishing gear will have caught up with the fish, either 
because the towing speed of the gear was higher than the swimming capacity of the fish, or because 
the fish became exhausted and fell back. Following capture, fish will end up in the cod-end of the net 
along with any other catch. Here, fish will experience a secondary stressor, due to mechanical com-
pression limiting their movement ability and possibly their ability to ventilate their gills. Depending on 
any capture of non-fish material (peat, rocks, crustaceans, etc.), fish may be subjected to more severe 
mechanical injury, such as compression or perforation. For trawling operations, the maximum duration 
of this secondary stressor is potentially as long as the duration of the fishing effort, while for seining, 
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the duration will be considerably shorter. Upon retrieval of the gear, the catch is subjected, in addition 
to the possibility of being pulled through layers of water differing in temperature, salinity and oxygen, 
to air and light exposure lasting as long as the handling and sorting operations on deck.  
 
The two main stressors in the capture process outlined here are exhaustion and reduced ability to 
ventilate; the latter caused either by mechanical compression of the gill operculum or air exposure. 
The physiological manifestation of exhaustion is elevation of blood cortisol levels as a mechanism to 
mobilize energy stores, depletion of energy reserves, blood and tissue acidification, and accumulation 
of metabolites from aerobic and anaerobic metabolism. The inability to ventilate means that the recov-
ery process cannot be initiated, and potentially a further exacerbation of conditions. 
 
The severity of the physiological distress caused by capture and handling will determine the ability of 
a fish to recover, as well as the time required to make a full recovery. The magnitude of physiological 
distress from capture and handling was measured in plaice captured by trawl in the early spring 
(March) and summer (August) immediately following capture, and after a simulated 45 min and 90 min 
sorting period. In addition, measurements were performed on fish that had been allowed to recover 
for 10 days. Measurements were also taken from fish caught from commercial vessels, one fishing 
with a trawl whilst another fishing with a Danish seine. Both commercial catches were conducted in 
October.  
 
The overall aim of this work was to assess seasonal differences in the magnitude of physiological dis-
tress from capture, the temporal development in stress responses following retrieval of the fishing 
gear, and the effect of gear type. 
 
Capture of fishes in March and August was achieved by trawling for 3 hours from R/V Havfisken (see 
2.5). The cod-end of the trawl was emptied into the first pounder on-board the vessel, from where it 
was transported to a second pounder adjacent to the sorting table. Immediately, the first 10 fish at or 
below the MCRS (27 cm) were sampled for blood and skeletal muscle. A subsample of blood (March 
only) was analysed for plasma glucose, whole blood pH, partial pressure of CO2 and plasma bicar-
bonate using a point –of-care analyser (i-stat, Abbott Laboratories, IL, USA) with EC8+ cartridges. 
The remaining blood sample was centrifuged for 5 min at 6.000 rpm and the plasma fraction was 
snap frozen in liquid nitrogen (Figure 45). 

 

Figure 45. Taking blood sample from the fish (left) and post-processing the sample (right). 

 

Following blood sampling, the head of each fish was frozen in liquid nitrogen for later analysis of brain 
levels of adrenaline (Ad), dopamine (DA), serotonin (5-HT), dopamine metabolite (DOPAC), and sero-
tonin metabolite (5-HIAA) in the telencephalon by high-performance liquid chromatography with 
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electrochemical detection (HPLC-EC) as described by Gesto et al. (2017). Brains were also assessed 
for the occurrence of haemorrhaging by visual scoring from 1-5, where 1 is no haemorrhaging and 5 is 
severe haemorrhaging. 
 
A muscle sample (approximately 1 gram) was excised from immediately above the lateral line approx-
imately at the level of the tip of the pectoral fin. Tissue samples were snap-frozen in liquid nitrogen. 
Analyses of glycogen and lactate were performed using commercial kits (Sigma Aldrich, (MAK-016 
and MAK-064 respectively). Plasma levels of cortisol were analysed using a commercial cortisol kit 
(Neogen Life Sciences) whereas lactate and glucose levels were determined using handheld plasma 
analysers. 
 
To determine to what extent the blood of plaice may sustain damage from mechanical or osmotic dis-
tress, mechanical and osmotic fragility tests were also conducted. Briefly, whole blood was subjected 
to mechanical distress by rotating blood samples in the presence of a stainless-steel bearing for 20 
minutes, after which the amount of haemolysed blood was assessed by determination of the haemo-
globin content in the plasma fraction. For osmotic fragility tests, blood was progressively diluted with 
distilled water and the amount of haemolysed blood was determined as for the mechanical fragility 
test. 
 
Brain hormones 
Dopamine (DA) levels immediately following capture (t0) in March were not significantly different from 
levels measured in 10 days recovered fish and showed only a tendency for reduction in response to 
increasing handling times (t45, t90) (Figure 46A). In contrast, DA levels for the t0 group in August 
showed a significant decrease compared to the same time point for March and for recovered fish and 
had a stronger tendency to decrease with increasing sorting times. This was also reflected in the do-
pamine metabolite (3,4-Dihydroxyphenylacetic acid, DOPAC) levels that were elevated for the August 
trawl, but not for the winter trawl or recovered fish (Figure 46B). Serotonin levels did not differ be-
tween seasons (Figure 46C) or in recovered fish (Figure 46D), and a similar response was seen for 
noradrenaline (Figure 46E). 
 
Brain haemorrhaging 
Visual inspection of the dissected brain showed a high degree of haemorrhaging in the outer layer of 
the brain. Compared against to the 10 day recovered fish (although these also had a relatively high 
degree of haemorrhaging - score 1,7) the t45 and t90 groups from the summer trawl showed signifi-
cantly higher scores (3,8 – 3,9) than the remaining groups. 
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Figure 46. Telencephalon levels of dopamine (A), the dopamine metabolite, DOPAC (B), serotonin (C), the 
serotonin metabolite, 5-HIAA (D), and noradrenaline for plaice captured in winter (March) and summer 
(August) immediately following landing on deck (t0) and after 45 (t45) and 90 (t90) minutes sorting time. 
For comparison, values for fish that had been brought to on shore holding facilities and recovered for 10 
days (10d recovery). 
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Blood chemistry 
Upon landing, fish had already doubled their blood glucose levels compared to recovered fish, and 
blood glucose levels continued to increase with increasing sorting times (Figure 47A). Plasma pH lev-
els were significantly decreased at the time of landing (on deck), compared to recovered fish, and de-
creased further as sorting times increased (Figure 47B). This decrease in pH was presumably in part 
driven by an increase in hypercapnic conditions of the blood as pCO2 levels continued to increase 
with sorting times (Figure 47C), and the change in pH probably also facilitated dehydration of plasma 
bicarbonate as evidenced by decreasing levels of plasma HCO3 (Figure 47D). 

 

Figure 47. Data for plasma glucose (A), blood pH (B), partial pressure of CO2 in the blood, pCO2 (C) and 
depletion of bicarbonate (HCO3-) immediately following capture and during progressive increases in 
sorting times from the winter trawl (March). 
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Muscle glycogen 
White muscle glycogen stores became progressively depleted with increasing sorting times (Figure 
48A). The rate of depletion did not differ between winter and summer, but initial levels immediately 
following capture were lower for fish caught during warmer water temperatures in August. Data from 
the commercial fishing vessels showed that glycogen reserves in fish caught by trawl tended to be 
more depleted than for fish caught by Danish seine (Figure 48B). Surprisingly, glycogen levels in fish 
that had recovered on shore for 10 days had not replenished their glycogen stores. 

 

 

Figure 48. White muscle glycogen reserves in fish caught during winter (March) and summer (August) 
and during progressively increasing sorting times (A). White muscle glycogen levels from fish caught by 
a commercial trawler and Danish seine are shown in panel (B) along with data from fish that had recov-
ered for 10 days on shore. 
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Muscle lactate 
Analysis of the accumulation of muscle lactate is given in Figure 49. There was no correlation be-
tween the amount of muscle lactate in relation to either season or sorting time (Figure 49A) nor in the 
comparison with the commercial trawl vessel or the seine vessel. Fish that had been allowed to re-
cover for 10 days had cleared their muscle lactate and had levels that were significantly lower than for 
captured fish. 

 

Figure 49. White muscle lactate concentrations in fish caught during winter (March) and summer (Au-
gust) and during progressively increasing sorting times (A). Muscle lactate levels from fish caught by a 
commercial trawler and Danish seine are shown in panel (B) along with data from fish that had recovered 
for 10 days on shore.  

 

Osmotic and mechanical fragility test 
The osmotic fragility test showed that the onset of blood haemolysis did not occur until plasma osmo-
lality was reduced by approximately 30% (Figure 50). This was not significantly influenced by the 
presence of adrenaline, although there was a tendency for adrenergically stimulated red blood cells to 
reach 50% haemolysation at a higher relative osmolality (0,51 vs. 0,47).  
 
The mechanical fragility test did not indicate that handling or mechanical influence of the fish during 
the capture process would result in haemolysis of the blood. 
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Figure 50. The percentage of haemolysed blood in relation to relative changes in plasma osmolality 
achieved by dilution with mixtures of distilled water and 0,9% NaCl, in the absence or presence of 100nM 
adrenaline. The onset of haemolysis occurs at a relative osmolality of 0,64 for both treatments, although 
adrenergic stimulation reveals a tendency for 50% haemolysis to occur at a higher relative osmolality, as 
indicated by the red drop lines in the graph. 

 
The results reveal two main findings. The first is that the level of exhaustion based on the metabolic 
indicators is negatively influenced by increasing temperatures. In summary, fish that were trawled dur-
ing the summer showed a depletion of dopamine. Dopamine is a hormone that is known to modulate 
the cortisol response, and therefore dopamine depletion can be interpreted as an increase in the 
overall stress of the animal. A higher rate of dopamine turnover in the summer caught fishes is sup-
ported by the general elevation of the dopamine metabolite DOPAC. Furthermore, fish that were 
caught during the summer months also showed a greater degree of muscle glycogen depletion, indi-
cating that capture during warmer conditions is energetically more costly, in comparison to fish caught 
during the winter period. Surprisingly, the muscle lactate levels were not elevated in the fish caught 
during the summer. The haemorrhage scoring of fishes shows that prolonged sorting times during the 
summer will likely be fatal for fish. 
 
The second main finding of the study is the effect of sorting times. In the present study, groups of fish 
were sampled immediately following landing, while two additional groups were sampled 45 minutes 
and 90 minutes after landing, to simulate the maximum amount of time that it might take to sort the 
catch and discard the undesired fraction of the catch. During this sorting time, fish remained out of the 
water and therefore had no possibility to initiate recovery. As sorting times increased, glycogen levels 
became progressively depleted. This was also evident from the increasing levels of glucose that were 
mobilised to the blood of the fish. The decrease in plasma pH and increase in CO2 show that fish rely 
on anaerobic metabolism during sorting, and that they cannot rid themselves of the metabolites from 
this process, leading to increased distress.  
 
The fish that served as an internal control (the 10-day recovery group) did not show complete recov-
ery following capture after 10 days of holding in captivity. The present results do not lend evidence as 
to why this might be. Following arrival at the land-based holding facility, fish were not fed for the first 7 
days, because previous experience in survival studies showed that fish are not particularly interested 
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in feeding. Hypothetically, the lack of feeding might explain why, for example, fish were not able to re-
cover the muscle glycogen to normal levels. Future studies should strive to make feed available to fish 
held in captivity. 
 
Overall, dopamine levels, plasma glucose, plasma pH, plasma pCO2, plasma bicarbonate, and mus-
cle glycogen are all useful indicators of the magnitude of physiological distress experienced by the 
fish following capture and sorting. For most, these are not variables that can be employed by the fish-
ing industry but provide insight into the response variables to trawling. Degree of brain haemorrhaging 
might, with proper training, serve as a useful tool or indicator for the probability of survival. Future 
studies should include monitoring of these variables in the recovery phase, to determine how quickly 
(or slowly) fish are able to recover from the capture process. 
 
3.3.5. Effects of hypoxia on recovery of trawl-caught plaice (Case study 3) 
Capture and/or discard in hypoxic conditions may impede recovery and lengthen the window in which 
fish are at greater risk for predation or delayed mortality due to the fishery interaction. Discard in hy-
poxic conditions may in addition increase the risk of a predatory encounter as the fish may attempt to 
seek normoxic conditions. Controlled experiments in the laboratory complement our knowledge on the 
possible effects of oxygen conditions on discard survival. 
 
Fish were exposed to simulated trawl conditions consisting of mechanical chasing until unresponsive 
to tactical stimulation (i.e., total reflex impairment), followed by 15 minutes of air exposure. The signifi-
cance of dissolved oxygen levels following discard was assessed in groups of fish using respirometric 
approaches to quantify oxygen uptake and biochemical analysis of muscle and blood samples. 
Groups of fish (n = 8) were transferred to respirometers following trawl simulation and their oxygen 
uptake levels were monitored during the following 24h (discarding) under either normoxic (>90% O2 
saturation), or 50 and 30% O2 saturation (Figure 51). Fish in all treatment groups showed an increase 
in oxygen consumption during discarding, but fish in the 30 and 50% O2 saturation groups were signif-
icantly impaired in their maximum oxygen uptake rates (50-65% reduction) (Figure 52). 

 

 

Figure 51. Oxygen consumption rates in plaice discarded to normoxic and 2 levels of hypoxic conditions 
following simulated trawl. Each trace is an average of measurements from 8 individuals. Hypoxia impairs 
the maximum amount of oxygen that fish can extract from the water to fuel their recovery.  
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Figure 52. Baseline and maximum oxygen consumption during recovery, illustrating the reduced capac-
ity to extract oxygen from the water during hypoxic conditions. For the most severe hypoxia treatment, 
this resulted in a 65% loss in metabolic scope, calculated as the difference between the maximum and 
standard metabolic rates. 

 
The hypoxic groups had a significantly smaller oxygen debt following discard, indicative of an inability 
to fully recover from trawl during the discard period (Figure 53). This is somewhat counterintuitive 
since fish in hypoxia would be more likely to have a larger oxygen debt, but presumably reflects a 
larger utilization of anaerobic pathways not reflected in the respiration data, or that is prolonged be-
yond the 24h observation period. 

 

Figure 53. Total oxygen (cost of recovery) in the 24h following discard. Fish in severe hypoxia show a 
decrease in excess post-exercise oxygen consumption (EPOC, or oxygen debt), which is more likely to 
be the result of an increased reliance on anaerobic metabolic pathways or a prolonged recovery period. 

 
Fish discarded to hypoxic conditions showed a significantly higher cortisol response indicative of a 
larger stress response, as well as a significantly higher lactate release rate, demonstrating an in-
crease reliance on anaerobic metabolism when being returned to oxygen poor waters, which was fur-
ther supported by a larger depletion of glucose reserves by the fish (Figure 54). 
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Figure 54. No differences in the maximum cortisol response were observed between hypoxic and 
normoxic treatments, but under the most severe hypoxic conditions, the elevated cortisol levels per-
sisted for more than 4 hours, at which point the normoxic and intermediate hypoxia group showed recov-
ery (left panel). Plasma glucose levels in the severe hypoxia group were significantly depleted compared 
to the moderate hypoxia group and the normoxic group but recovered at 24h (right panel). 

 
Muscle creatine, a metabolic end-product of phosphocreatine degradation, was significantly elevated 
in both treatment groups, indicating a larger energy turnover, which was also observed for inorganic 
monophosphate resulting from de-phosphorylation of ATP. Measurements of ADP and AMP showed 
a faster rate of degradation in the hypoxic treatment groups. Overall, the results show that fish that 
are discarded to hypoxic waters have a more severe stress response and a prolonged recovery pe-
riod. Despite this, all treatment groups recovered their measured biochemical indicators and oxygen 
consumption rates to pre-stress conditions within 24h. There were no stress-related mortalities in any 
of the treatment groups during the experiments. Fish that were exposed to trawl simulation and dis-
carded to hypoxic conditions showed no indications of trying to escape oxygen-poor conditions, in-
stead they all burrowed in the sediment immediately following release. It remains unequivocal whether 
simulated trawl exerts the same magnitude of stress as experienced during commercial fishing. 
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4. Predicting discard survival 

The common way to estimate survival rates is to observe fish in captivity that would be discarded un-
der commercial conditions, until the mortality levels off, i.e., approaches an asymptote (ICES, 2014). 
Such captive observation studies are labour-intensive, logistically challenging and financially demand-
ing. As an alternative, the use of fish condition as a potential predictor for mortality has been dis-
cussed over the last years for different species and fisheries (e.g., Davis, 2007, 2010; Humborstad et 
al., 2009; Barkley and Cadrin, 2012; Raby et al., 2012; Uhlmann et al., 2016; Methling et al., 2017). 
Indeed, measures of impairment in fish condition can be used as an indicator for discard survival 
providing that they are calibrated with survival likelihood estimates from, e.g., captive observation 
studies. 
 
Promising indicators of fish condition as good survival proxies are external damages and reflexes 
(scoring the presence or absence of pre-determined attributes), as well as vitality (ICES, 2014; Davis, 
2010; Uhlmann et al., 2016; van der Reijden et al., 2017). 
 
It was shown that the relationships between these proxies and mortality are species-specific (e.g., Da-
vis, 2007), but also depend on the conditions in which the proxy-survival relation was established. A 
good predictor must be correlated with discard mortality over a wide range of fishing conditions (Da-
vis, 2007). It should also be demonstrated that the chosen proxy is transferable between certain spe-
cies and gears by having species and fishery-specific vitality-survival calibrations.  
 
4.1. External damages and reflexes 

 

Figure 55. Visual assessment of the fish for external damages and reflexes onboard the fishing vessel. 

 
External damages account for impairments to the fish which are visually observable and known to 
have a direct relationship with trauma and potential infection, and thus mortality, e.g., scale loss, 
bruises, and injuries (Figure 55). Reflexes are innate involuntary actions or responses to a stimulus 
(e.g., touch) that account for impairments to the fish which are not visually observable such as internal 
injuries. Reflexes are initiated by the neuro-muscular response system directly related to vitality, and 
therefore independent of the effect of other factors such as size or sex (Uhlmann et al., 2016). Rele-
vant external damages and reflexes are identified for the species of interest by in-situ observations of 
the most representative attributes, together with the collection of unimpaired individuals, to define 
which attribute can be consistently scored.  
 



Discard survival of undersized European plaice caught with towed fishing gears in Danish waters                                          68 

External damages and reflexes can be further combined to a single index score, by summing the ar-
ray of individual scores for each attribute (also known as aggregated vitality assessment). This ap-
proach is simple, but assumes that (i) the presence of one attribute is unrelated to the presence of the 
others, i.e., no multi-collinearity between attributes, (ii) attributes have an additive effect on survival, 
i.e., no interaction with other operational/environmental/biological factors, and (iii) attributes contribute 
equally to survival, i.e., no better predictors than others as the different attributes are given an equal 
weighting factor of one. These assumptions may not be always verified. As an alternative, WGMEDS 
has suggested that individual attributes should be fitted as separate parameters within a statistical 
model (also known as partitioned vitality assessment; Breen and Catchpole, 2021).  
 
Aggregated and partitioned vitality assessment provides a detailed description of the health, external 
damages, and reflex impairment of the sampled individuals. However, this can be at the expense of a 
longer and more complex assessment. Indeed, a good predictor must be easy to collect at sea as one 
possibility to widen the conditions under which survival is assessed is to ask observers at sea or fish-
ermen to self-sample. The chosen proxy should therefore be easy to understand and assess.  
 
4.2. Vitality class 
Vitality class (also known as categorical vitality assessment) is a more general assessment of the fish. 
It has various definitions from one study to another, but is usually given as a four-level ordinal index 
based on fish injuries and body movement (Benoît et al., 2010; van Beek et al., 1990).  
 
Vitality, reflex, and damage assessment was done for plaice and lemon sole. Harmonizing methodol-
ogy across study observations allows data to be pooled from a larger number of trips. Observer varia-
tion: training rather than experience of raters minimized inter-rater differences (Meeremans et al. 
2017). Training took place together with an experienced observer and specialist in reflex assessment, 
Sebastian Uhlmann, ILVO, Belgium. To our knowledge, this is the first assessment of lemon sole aim-
ing at identifying a set of relevant assessment criteria for further use as a Reflex Action Mortality Pre-
dictor (RAMP). There is no MCRS for lemon sole, even though the market size is usually above 26 
cm.  
 
4.2.1. Vitality of the caught fish (Case study 2) 
Vitality assessment was conducted immediately after sorting of the catch onboard the vessel (Figure 
56). Each individual was given a vitality score using the criteria in Table 12. Fish that appeared dead 
after sorting were included in vitality class 4, and some of these moribund individuals quickly recov-
ered after the assessment.  
 
A total of 151 individuals from 7 hauls were assessed onboard for external damages, reflexes, and 
vitality, and observed in captivity, during the research trial in the winter. A total of 820 undersized 
plaice from 37 hauls were assessed onboard for vitality, and observed in captivity, during four com-
mercial trials.  
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Figure 56. Assessment of the fish on deck using a fish measuring board, weight and PIT tags (left). This 
included scoring of the fish condition (vitality, reflexes, and external injuries) in an assessment box filled 
with fresh sea water (right). 

Table 12. Description of the four vitality classes, based on both body movements and damages. 

Vitality class  Description of body movements  Description of damages  
1: lively  Active  Minor damages  
2: less lively  Body movement recognizable  Visible damages / hemorrhages  
3: lethargic  Body does not move but mouth/operculum movement 

recognizable  
Apparent damages / hemorrhages  

4: moribund  No body movement or mouth/operculum movement  Pronounced damages / hemorrhages  

 

The reflexes “head complex” (R3) and “evasion” 
(R4), and the external damages “body bruises” 
(D3), “intestines” (D4) and “wounds” (D5) re-
sponded most consistently from individual to indi-
vidual among fit individuals, i.e., 15 min hauls (Fig-
ure 57). Among these five attributes, the most rele-
vant for reflex impairment and damage absence 
occurring at three different air exposures among 
commercial individuals, i.e., 180 min hauls, were 
the reflexes “head complex” (R3) and “evasion” 
(R4) (Figure 58).  

Figure 57. Number of assessed fish by score (0 = 
reflex unimpaired or reflex absent, 1 = reflex im-
paired or damage present) for each tested attribute 
on plaice to find which attributes respond most con-
sistently among fit individuals (15 minutes hauls) 
during the research trial (bottom otter trawl). 
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Figure 58. Number of assessed fish by score (0 = reflex unimpaired or reflex absent, 1 = reflex impaired 
or damage present) for each tested attribute on plaice to find the most common and relevant attributes 
occurring at 0-, 45- and 90-minutes air exposure among commercial individuals (180 minutes hauls) dur-
ing the research trial (bottom otter trawl). 

 

 

 

 

4.3. Effect of temperature on vitality/reflexes 
Warning: The results presented here are based on plaice caught by Belgian beam-trawlers.  
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Estimating and predicting mortality of caught-and-released organisms from both recreational and 
commercial fishing using the reflex action mortality predictor approach requires responsiveness of in-
nate reflexes to be independent of temperature. In this study, reflex responses and survival of beam-
trawled-and-discarded plaice were registered and evaluated whether they are independent from sea-
sonal, acclimated temperature or temperature shocks as part of the catch-and-discarding process 
(<10 °C from ambient water or air temperatures, with 10 min exposure times). Temperature differ-
ences (cold or warm shocks) that a fish may experience during trawling, sorting, and discarding into 
potentially thermocline-stratified water were induced by both manipulating (warming and cooling) air 
temperatures on-deck of the fishing vessel and cooling water (in summer) and warming (in winter; Fig-
ure 59). In total, 324 beam-trawled plaice (n=196 in summer and n=128 in winter) were exposed to 
two modified air temperature treatments and one modified (cooled in summer and warmed in winter) 
and one ambient water temperature treatment to represent the potential thermal shocks a fish may 
experience along the pathway of being beam-trawled-and-discarded (Figure 59).  

 

Figure 59. Schematic representation of the temperature treatments recreated to represent the potential 
seasonal temperature differences a plaice may experience in its pathway of being beam-trawled and dis-
carded. From the seafloor, its acclimated environment (1), a plaice is hauled through the water column to 
the surface (2), lifted out of the water and sorted on deck while being exposed to air (3), and if unwanted, 
released at the surface (4), from which it swims back down to the seafloor to recover through potentially 
thermocline-stratified water (5).  

It was hypothesized that both seasonality and temperature shocks were likely to affect all those re-
flexes which represent spontaneous behavioural responses to a stimulus, and therefore their combi-
nation, the reflex impairment index. Spontaneous reflexes were considered to include all but the head 
complex (i.e., body flex, righting, evasion, and tail grab). As a true reflex, the head complex reflex was 
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expected to be affected by the acclimated temperature at the seafloor and therefore seasonality, ra-
ther than by temperature differences experienced onboard. For post-release survival, it was hypothe-
sized that in summer fish may be more affected, and therefore less likely to survive, by any experi-
enced temperature shock than in winter as they are closer to their temperature tolerance limit. It was 
also hypothesized that post-release survival may be partially predicted by the reflex impairment index. 
 
Both spontaneous and true reflexes were affected by ambient temperature, and thus, were not inde-
pendent of environmental conditions. By investigating the role of temperature in affecting vitality and 
probability of survival among beam-trawled and discarded plaice, it was demonstrated that the water 
temperature to which fish were acclimated to at the seafloor rather than the temperature differences 
(cold or warm shocks) that a fish may experience during trawling, sorting and discarding into poten-
tially thermocline-stratified water columns had a greater effect on both impairment of reflexes and sur-
vival of plaice (Figure 60). In the winter compared to summer, fewer reflexes were impaired, and sur-
vival was higher among beam-trawled plaice. All reflexes showed high impairment in summer, and 
except for the body flex reflex, none were affected by temperature shocks alone (Figure 60).  

 

Figure 60. Percentage of impairment of each of the five reflex responses assessed among sampled plaice 
after exposure to each treatment combination per season (BF=body flex; E=evasion; HC=head complex; 
R=righting; TG=tail grab). To simulate the temperature change when plaice transition from water to a po-
tentially variable air environment after capture and during on-board handling and sorting, plaice were ex-
posed to an air temperature treatment, where air was both chilled (coldair-treatment) and heated (war-
mair-treatment) on-board (Phase 3). To simulate what discarded fish may experience when transitioning 
from air to water and returning to the seafloor through a potentially thermocline-stratified water column 
(Phase 4; previous Figure), fish were discarded into either an ambient or modified (heated in winter or 
chilled in summer) water temperature treatment.  The ambient water treatment was meant to represent 
the environment the fish was acclimated to (= no temperature shock from water treatment, only from air). 
The modified water temperature treatments depended on the season and represented thermocline-strati-
fied water, summarizing to the following temperature conditions: a) Summer - Modified water treatment  = 
cold shock, presence of a thermocline when returned to the water going back to colder environment after 
discarding; b) summer - ambient water treatment = no shock, no thermocline; c) Winter - Modified water 
treatment  = warm shock, presence of a thermocline when returned to the water going back to warmer 
environment after discarding; and d) winter - ambient water treatment = no shock, no thermocline. 

Body flex was highly impaired under every exposure combination and was therefore suggested to be 
used to distinguish responses of captured-and-discarded from unstressed individuals. Fish size and 
air exposure further influenced the impairment of some reflexes. Post-release survival was low in 
summer (21%) and high in winter (99%; Figure 61Figure 61). Beam trawling in summer is likely to 
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have deleterious consequences for any discarded plaice, and therefore temporal-spatial mitigation ap-
proaches should be prioritised over controlling temperatures on-board. 

 

Figure 61. Survival percentage of sampled plaice after exposure to each treatment combination per sea-
son. 

 
With decreased dissolved oxygen concentrations in summer, exercised fish might have to battle with 
an anoxic cycle to mobilise energy to sustain an evasion response to being herded by the demersal 
fishing gear. A resulting high concentration of lactic acid in the blood and in the white muscle tissue 
can compromise the ability of red blood cells to transport oxygen to the cells and cause asphyxiation. 
In this study, reflex responsiveness and survival were measured, but not physiological parameters to 
measure metabolic rates (such as oxygen consumption), stress (blood plasma sample, for cortisol, 
potassium ions, and glucose) and physical exhaustion (white muscle issue, for creatine compounds) 
that could possibly explain any cause-and-effect relationship. Acute decreases in temperature have 
been associated with loss of dorsoventral orientation in fish, which was supported by our data, but not 
significant in reducing the impairment of the righting reflex. However, the direction of the water shock, 
due to the experimental design, inherently has a seasonal feature and is therefore biased by the tem-
perature tolerance level at which the fish was originally acclimated. Hence, the cold-water shock may 
have contributed to the righting impairment, but it is not possible to discern its detrimental effect from 
that of summer high temperatures. In summer, with 20°C water temperature, the metabolism and en-
ergy budget of plaice is most likely at the upper limit of their thermal tolerance, and they become intol-
erant towards any cumulative fishing capture stress. 
 
4.4. Optimized reflexes and injuries Index (Case study 3) 
A vitality indicator can be expressed as a simple proportion of impaired reflexes, or present injuries, or 
as an index generated from impaired reflexes and present injuries scores (Davis, 2010; Meagher, 
2009). The latter implies, however, that both reflex impairment and injuries contribute with equal 
weights to post-capture survival and have thus been criticized in the literature for disregarding any 
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differential contributions of individual reflexes to the observed mortality (Breen and Catchpole, 2021). 
To test whether some reflexes and injuries may be more relevant than others for the survival of the 
fish, the performance of different optimization functions can be evaluated to optimize the weightings of 
individual reflex and injury attributes to ideally make predictions more accurate. Even if the survival of 
a fish can be predicted with reasonable certainty based on the observed reflex impairment and/or inju-
ries and/or categorical vitality scores, predicting mean survival at the trip level can become challeng-
ing. Similar mean scores may be obtained for different trips despite different scores for different vitality 
attributes (e.g., if one trip gives a high score for reflexes and a low for injuries and vice versa for an-
other trip so the two effects cancel each other out, Uhlmann et al., 2021). This situation is more likely 
if all reflexes and injuries are given equal weight. A reliable vitality indicator should therefore be opti-
mized not only at the fish level, but also at the trip level. In this study, we aimed to optimize a reflex 
and injury index at both fish and trip levels (in different models). The index was tested against other 
vitality indicators (reflex impairment index, number of impaired reflexes, number of present injuries, 
number of impaired reflexes and present injuries, categorical vitality score, individual reflexes, and in-
juries scores) for their ability to predict discard survival of bottom-trawled plaice.  
 
Vitality and discard survival data of undersized, trawl-caught plaice were collected following a harmo-
nized protocol (Uhlmann et al., 2016, 2021; Breen and Catchpole, 2021) from four Belgian beam 
trawlers and one Danish otter trawler, respectively. Each candidate model was built with mortality at 
asymptote (at the fish level with 0 for alive and 1 for dead) as the response variable. All models were 
tested with the coherent biological, environmental, technical, and operational explanatory variables 
(covariates), i.e., fish length, surface seawater temperature, gear type, fishing depth, gear deployment 
duration, total catch weight, air exposure, and two plausible interactions, one between gear type and 
surface seawater temperature, and the other between air exposure and surface seawater tempera-
ture. The optimization procedure aimed at finding the weighing of the reflex and injury attributes mini-
mizes the AIC for fish-level comparisons and the absolute difference between predicted and observed 
trip-level comparisons. Optimization procedures were applied based on the open-source R package 
OptimX (Nash et al., 2022). 
 
Bruising in the head and body were the most important contributors to the survival probability of dis-
carded plaice with 90 and 95% of the best models showing coefficients higher than 0.10 (0.25 ±0.08 
and 0.36 ±0.09 at fish level and 0.20 ±0.12 and 0.37 ±0.14 at trip level, respectively). Body flex, right-
ing, tail grab and point head were also important for the prediction of survival with weighing coeffi-
cients ranging from 0.11 to 0.26 for 40, 45, 25 and 30% of the best models, respectively. The least 
important reflexes and injuries were head complex, evasion, stabilise and point body with less than 
5% of the best models showing coefficients higher than 0.10. 
 
Overall, none of the individual reflex or injury indicators were independent of biological, environmen-
tal, technical, and operational covariates when predicting plaice discard survival, both at fish and trip 
levels. The best models (based on AIC) for each vitality indicator all included the interaction between 
air exposure and sea temperature. 
 
The optimized index did not improve predictions markedly as both the reflex impairment and injury in-
dex as well as the less labour-intensive categorical vitality score were almost equally valuable proxies 
of plaice discard survival. Indeed, the difference in IPA between the best model (partitioned) and the 
easiest to assess onboard (categorical vitality score) is 3%.  
 
When we compare observed and predicted survival ratio for each trip in the context of management 
purposes, i.e., assessing whether the survival ration is high, all vitality indicators could correctly 
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predict high (>0.50) or low (<0.50) survival except for one trip. If we balance quality of the prediction 
and ease of assessment at sea, the categorical vitality scoring is able to correctly predict between 
high and low survival (0.5 as a threshold) in the (simplified) context of advice, i.e., balance between 
how easy the method is (in the context of collecting the data at sea and being able to assess more 
fish with the onboard observers for example for whom it would be easier and more precise to use the 
categorical vitality index than the optimized index) and how much precision is required.  
 
4.5. Bayesian framework to include expert knowledge (Case study 3) 
In contrast to traditional (frequentist) methods previously used in our survival studies, the Bayesian 
network model approach can integrate expert knowledge regarding life-history traits and the prevailing 
operational, environmental, and biological conditions of fisheries to predict survival probability after 
release. Bayes network models are extensively used in Artificial Intelligence applications. This expert 
system may be suitable as a low-cost decision support tool for fisheries managers. Such a system 
can also be trained by the data that are collected.  
 
4.5.1. Discretise the data to optimise their predictive accuracy and favour interpreta-

bility 
Our aim was to discretise the data to optimise their predictive accuracy and favour interpretability at 
the same time. We choose to measure predictive accuracy with classification error, that is, the propor-
tion of observations for which the discretised survival probabilities are incorrectly predicted. 
 
We considered two types of Bayesian models: causal network models whose structure is learned di-
rectly from the data, with constraints on arc directions enforcing a partial ordering of the nodes in the 
network, and naive Bayes network classifier models. A naive Bayes model is simpler than a data-
driven causal network because its structure is fixed: we only estimate its parameters from data. At the 
same time, it is a network model that is explicitly designed for predictive accuracy in classification. 
 
4.5.2. Survival probability of a new fish in an existing trip 
We started with a prediction of the survival probability of a new fish in an existing trip. The training and 
validation sets were formed by splitting the data set at random. Therefore, both the training and the 
validation sets contained observations from all fishing trips, and the predictive accuracy from new 
fishes caught on those trips can be measured. Ideally, it would have been best to have a third, sepa-
rate data set to fit the survival model and prevent any kind of information leak. Indeed, information 
from the training set will leak into the validation set through the survival probabilities, which are esti-
mated from the observations in the training set even for the observations in the validation set. While 
undesirable, this is unavoidable given the limited available data, i.e., splitting our data into three sub-
sets would not leave enough statistical power to learn the causal network model. 
 
Continuous variables of the training set were jointly discretised by Hartemink’s algorithm into three 
levels, i.e., [0,0.25), [0.25,0.5] and [0.5,1] for the survival probability that can thus be interpreted as 
“low”, “average” and “high”. Discrete variables were left untouched. The validation set was then dis-
cretised using the same intervals as in the training set. Discretising both at the same time would lead 
to information leaking from the training set into the validation set and thus artificially inflating our accu-
racy estimates. The number of levels in the discretization influenced predictive accuracy: discretising 
all variables (response and explanatory) into three levels appeared to be a good trade-off between 
predictive accuracy, model complexity and predictive accuracy (Figure 62). Discretising the response 
variable (survival probability) into two levels was not descriptive enough, but four levels substantially 
increased the classification error. Discretising the explanatory variables into two levels reduced their 
ability to predict survival probability, but four levels increased the number of parameters of the model 
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without a corresponding improvement in its predictive accuracy. The structure of the model was 
learned from the training set, and its fit parameters were used to predict the discretised survival prob-
abilities for the observations in the validation set. 

 

Figure 62. Classification error for different number of levels of response (survival probability “survProb”) 
and explanatory variables in the Bayes models. 

 

The log-normal survival model consistently outperformed the Weibull survival model by 3-5% in terms 
of accuracy over different network models - note that this difference is not likely to be large enough to 
make a practical difference, so both models are suitable for real-world use. 
 
The joint discretisation and learning of the causal network used 10-fold cross-validation over 20 runs 
for a total of 200 networks learned. The consensus causal network was computed by taking the most 
frequent arcs appearing in the 200 networks learned. The arcs in the causal networks did not show 
any causal effects between variables beyond those implied by common sense and existing literature 
(Figure 63 left). Introducing the individual reflexes and injuries resulted in an even more complicated 
network structure (Figure 63 right). 
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Figure 63. The consensus causal networks computed by taking the most frequent arcs appearing in the 
200 networks learned, without (left) and with (right) the individual reflexes and injuries. 

 

When predicting survival probability for a new fish, adding the individual reflexes and injuries resulted 
in a lower predictive accuracy (increased classification error) in both the causal and naive models. Re-
moving the reflex and injury index in the naive models also increased predictive accuracy (Table 13). 
Compared to the causal network models, the naive Bayes models achieved a similar level of predic-
tive accuracy without the added complications of learning the structure of the network from the data 
(Table 13). 
 
Table 13. Classification errors for the different models (the lower the better). 

Model type Without RI index Without reflex and injuries With reflex and injuries 
Causal for new fish - 0.125 0.135 
Causal for new trip - 0.404 - 
Naive for new fish 0.170 0.172 0.222 
Naive for new trip with 
single approach - 0.516  

Naive for new trip with 
ensemble approach - 0.364 - 

 
 
4.5.3. Prediction of the survival probability of a new fishing trip 
We started with a prediction of the survival probability of a new fish in an existing trip, but of course, 
predicting survival probability of a new fishing trip is more relevant in the context of fisheries manage-
ment. However, predicting fish survival in an entirely new fishing trip, i.e., that has not been used to 
learn the models, is more difficult than predicting fish survival in observed fishing trips because of the 
heterogeneity between different trips.  
 
When predicting a new trip, one trip constituted the validation set, and all the remaining trips the train-
ing set. Continuous variables in the training set were jointly discretised by Hartemink’s algorithm into 
three levels (“low”, “average” and “high” as above); discrete variables were left untouched. We discre-
tised the validation set using the same intervals as in the training set. When predicting a new trip, the 
classification error was much higher in the naive than in the causal models (Table 13). We attribute 
this to how heterogeneous the fishing trips are: the causal network can adapt to different subsets of 
trips because we learn its structure from data, which we do not for the naive Bayes network.  
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For the naive Bayes models, an alternative approach (ensemble approach) allows to use the fixed 
structure to construct an ensemble of naive Bayes models that can be used for prediction. In this 
case, one trip constituted the training set, and all the remaining trips the validation set.  
 
The classification error of the ensemble approach was much lower than in single naive Bayes or 
causal models. We observed that it was rare (7.9%) for a low survival probability (<25%) to be incor-
rectly predicted as a high survival probability (50-100%) or vice versa. 4.3% of the fish with a high 
probability of survival (>50%) were predicted to have an average probability of survival (25-50%) and 
3.5% to have a low probability of survival (<25%). 
 
4.5.4. Bayesian Belief Network model to estimate post-release survival potential  
The objective of this work is to build an operational Bayesian Belief Network (BBN) model to estimate 
post-release survival potential of discarded plaice. The BBN model was constructed from a combina-
tion of historical data and subject matter expert knowledge. The typical user case would be to identify 
species-fisheries for which it would be meaningful to collect scientific documentation for a high sur-
vival exemption in the context of the CFP.  
 
The addition of edges to the model was based on the Bayesian Information Criterion (BIC) score (a 
score that combines model complexity and how well the model represents the data in terms of log-
likelihood) as well as the Area-Under-Curve (AUC) measure (how well – or not, does the model clas-
sify each deployment as having a higher than 50% survival rate). The score of the initial model was 
computed. Until no improvement in the score, each candidate edge to the model was added and the 
score of the extended model was computed. The edge that improved the score the most in the model 
was then included.  
 
The model output indicates the probability of a survival rate above 50%. It can be used as a relative 
score to compare different scenarios but should not be interpreted as an absolute probability of a sur-
vival rate above 50%. 
 
Our expert and data driven BNN is available online: http://demo.hugin.com/example/cope2. 
  

http://demo.hugin.com/example/cope2
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5. Conclusions and future perspectives 

The opportunity in the CFP to obtain exemptions from the landing obligation has driven an intensive 
research activity on discard survival on species expected to have high resilience to the capture and 
handling processes. Conducting discard survival studies are logistically demanding and scientifically 
challenging as true controls cannot be obtained and observing discarded fish in their natural environ-
ment without study-related burdens (e.g., tagging) that can influence survival is difficult. The large var-
iability in discard survival estimates between and sometimes within studies, may reflect that each 
study is conducted using one or a few fishing vessels, and under a limited range of fishing conditions 
and seasons while there is a large range of operational, environmental, and biological factors that af-
fects discard survival. Some ecosystems require specific investigations such as for example the Baltic 
Sea due to areas and periods with hypoxic conditions. The use of prey types in the stomach content 
of plaice as an indication of the oxygen levels in the feeding habitat of place in addition to the me-
chanical impact of hard-shelled prey in the stomach were new to discard survival studies. More effort 
in a dedicated feeding study would allow a dynamic description of the temporal feeding pattern and 
possible shuttling between areas. 
 
Improving gear design for selectivity and survival 
To reduce the discard amounts in fisheries, the CFP highlights the importance of developing new, 
more selective gear designs. In line with this, gear designs should also be developed to improve dis-
card survival as illustrated with the catch separation in a codend with different compartments for fish 
and Nephrops (Savina et al., 2019). 
 
Improving fishing operations 
New technologies such as electronic monitoring (van Helmond et al., 2019) and real-time catch moni-
toring (Sokolova et al., 2021) would allow for collecting additional data useful for estimating discard 
survival, e.g., sorting time, and improving fishing operations, e.g., by targeting catch compositions that 
give optimal discard survival.  
 
Temporal and spatial mitigation approaches, granting exemptions in those seasons when release sur-
vival can be maximized, are currently prioritised over controlling temperatures on-board. However, 
controlling temperatures in the space where the sorting takes place to match with the ambient, accli-
mated, environmental temperature (cool in winter, ambient in summer) would make sense to minimize 
any artefact temperature shocks and promote animal welfare-conscious fishing.  
 
Improving captive observation studies 
Future discard survival studies using captive observation should strive to make feed available to fish 
held in the tanks as the lack of feeding in the first week of captive observation might explain why fish 
were not able to recover the muscle glycogen to normal levels. 
 
Improving our understanding of drivers of discard survival 
While obtaining discard survival estimates have been a main aim of most studies for advisory pur-
poses, investigations on factors affecting the survival rates have been made in parallel to reduce the 
need for demanding capture observation studies, and at the same time achieve more robust discard 
survival estimates and to inform how fishing operations can be changed to improve survival rates.  
 
Investigations on how various factors influence discard survival could to a higher degree be per-
formed under controlled conditions in the laboratory. The overlap index for fishery and oxygen 
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presented in this report could be further used to enable the application of laboratory results on differ-
ential discard survival at different oxygen concentrations to calculate an estimated average discard 
mortality in the field. 
 
Proxies for discard survival, such as vitality, including reflex impairment and external damages, are 
simple to measure onboard and could be included as self-sampling programs to collect data onboard 
a wider range of vessels and fishing conditions. With an increased number of studies aiming at using 
vitality as a measure of discard survival, it has become evident that the various types of proxies are 
not always able to sufficiently predict discard survival (Kraak et al., 2018). This indicates that the link 
between observed vitality, reflex impairment, and external damages and survival, as well as how op-
erational and environmental factors are reflected in the different proxies is not well understood. This 
calls for a review of the assumptions and achievements when using proxies and an evaluation of how 
the use of proxies has evolved over time.  
 
Our results open for additional work to determine how quickly (or slowly) fish are able to recover from 
the capture process. Physiological variables such as dopamine levels, plasma glucose, plasma pH, 
plasma pCO2, plasma bicarbonate, and muscle glycogen are all useful indicators of the magnitude of 
physiological distress experienced by the fish following capture and sorting. For most, these are not 
variables that can be employed by the fishing industry but provide insight into the response variables 
to trawling. Degree of brain haemorrhaging might, with proper training, serve as a useful tool or indi-
cator for the probability of survival.  
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7. Supplementary material  

A. Survival catalogue 
About the dataset 
The dataset used for the analysis represents the years 2011-2016 and is extracted from the Danish 
database of the observer at sea data collection program (EU Data Collection Framework, DCF; EEC, 
2000). Data is collected during commercial fishing trips. Total landings and discard fraction of the 
catch is presented by métier, i.e., a combination of fishing gear, target species, mesh, and potential 
use of selectivity devices (Table A.1). “OTB_CRU_70-89_2_35”, for instance, encodes bottom otter 
trawls targeting crustaceans with a codend mesh size of 70-89 mm using a fixed grid (35 mm) as se-
lectivity device. The observer program covers less than 1 % of the fishery (Table A.2). Nevertheless, 
collected discard data at the trip level is raised to the fleet level. The dataset is therefore representa-
tive of the whole Danish fishery. Additional information on the observer at sea sampling program is 
detailed in Storr-Paulsen et al. (2010). 
 
The discard database served for estimating average annual landings (kg) as well as average annual 
discards (kg), which are presented in the document by species, area and fishery (gear, target and 
mesh size). Annual landings and discards have further been used to estimate discard ratios (dis-
card/total catch). Mean values averaged over the years as well as minimum and maximum values are 
presented within the document. 
 
Table A.1. Codes and abbreviations used throughout the whole document, based on metier-approach as 
used within the discard database. 

Gear code  Target species assemblage code 

FPN Fixed pound nets  CAT Catadromous species 
FPO Pots  CRU Crustaceans 
GNS Set gillnets  DEF Demersal fish 
LHP Handlines and pole-lines  FIF Finfish 
LLS Longlines set  MCD Mixed crustaceans and demersal fish 
OTB Otter trawls bottom  SPF Small pelagic species 
OTM Otter trawls midwater    
PTB Pair trawls bottom    
PTM Pair trawls midwater    
SDN Anchored seines  Selection device code 
SSC Scottish seines  0 No selection device 
TBB Beam trawls  2 Fixed grid 
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Table A.2. Sampling effort in the period 2011-2016. Number of total fishing trips and number of observed 
fishing trips separated by gear, target species assemblage and area (Ministry of Environment and Food 
of Denmark, Danish Agrifish Agency; observer program). 

Gear Target species 
assemblage 

Kattegat North Sea Skagerrak 
total observed total observed total observed 

FPN CAT 123 0 1163 0 0 0 
FPO CRU 8 0 447 0 0 0 

GNS 
CRU 600 1 1512 0 367 0 
DEF 3541 11 16938 51 12994 170 
SPF 107 0 8 0 13 0 

LHP FIF 8 0 135 0 295 0 
LLS FIF 0 0 420 1 59 0 

No logbook - 24978 0 37952 0 25597 0 
No matrix - 1103 0 5546 0 481 0 

OTB 

CRU 273 1 364 3 4264 33 
DEF 227 1 4524 0 2342 0 
MCD 41458 279 11154 88 41765 264 
SPF 2 0 1663 0 178 0 

OTM 
DEF 20 0 3 0 6 0 
SPF 3525 0 15 0 415 0 

PTB 
DEF 1 0 0 0 0 0 
MCD 0 0 1 0 30 0 
SPF 0 0 0 0 2 0 

PTM SPF 493 0 4832 0 100 0 
SDN DEF 86 2 1313 12 9477 42 
SSC DEF 0 0 652 6 245 1 

TBB CRU 0 0 11130 66 0 0 
DEF 0 0 370 0 192 0 

Note: Vessels <10 m are not obliged to fill in logbook information, i.e., category “no logbook” mainly consists of 
small trawlers and other small vessels using passive gears. No matrix: recorded information by vessel leads to a 
non-defined métier (e.g., mesh size outside the defined ranges). 

 
Information is shown on a species-by-species base in the following chapter of the document. After in-
troducing each species with general information including economic importance for the Danish fishery 
and a subjective estimation of discard survivability based on experiences by fishermen and scientists, 
figures are shown for all considered areas (Kattegat, North Sea, Skagerrak) summarizing the results 
for each fishing gear. If available, results of previous survival studies (excluding control hauls) are in-
cluded in those considerations based on estimates from studies investigating commercial gears (ex-
cluding pulse trawl). Those facilitate comparing differences in catches, discards, and survivability be-
tween fisheries for each species in each area. Ensuing tables show detailed information about aver-
age annual landings and raised discards of the Danish fleet as well as the resulting discard ratios (dis-
card/total catch) including minimum and maximum values. Those are presented as heatmaps, i.e., 
colors reflect the size of a value (landing, discard, or discard ratio) in relation to all other observation 
(low values are given in green, medium values in yellow and high values in red). 
 
Survival probabilities are given based on results of previously conducted survival studies on relevant 
species and relevant fishing gears. As estimates of survival probability estimates can be highly varia-
ble between different studies, specific conditions under which the studies were conducted (area, sea-
son, haul duration, study period, fish size) are given. Estimates for commercially used gears are high-
lighted in bold and summarized by area for studies which used commercial gears (excluding pulse 
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trawls). For simplicity, survival estimates are only shown as mean values for individual studies and as 
mean values (minimum-maximum) for area summaries, but no confidence intervals are provided 
within this document. In case confidence intervals are of interest, readers are kindly referred to the 
respective original document (references are provided). 
The following part presents, based on the discard information presented before, an overview of fisher-
ies discarding in particularly high numbers – either in absolute terms (>10 t per year), in relative terms 
(>40% of the catch) or combining both. 
 
The final section of the document summarizes all information presented within the document by trans-
lating those to a more subjective, but simple scale which is easy to read and allows to get an overview 
of a) a species’ robustness, i.e., the likelihood to survive stressful experiences, b) their importance for 
the Danish market, and c) if they are discarded in particularly high numbers. 
 
Species catalogue 
Brill (Scophthalmus rhombus) 
Although brill is no common target species within Danish waters, it is considered a valuable species 
on the market and is subject to TAC regulations within the North Sea (together with turbot). Generally, 
brill is considered to be a relatively robust species, i.e., the chance of surviving discarding is poten-
tially high. As this on experiences-based assumption does not allow to give a profound estimation of 
the survivability of brill, future studies are required assessing this. 
 

 

Figure A.1. Average annual landings (kg) and raised discards (kg) of brill by Danish vessels for the years 
2011-2016 separated by area and fishing gear. 
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Table A.3. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for brill, separated by area and metier including potential estimates on discard survival 
probability from previous studies (estimates for commercially used gears in bold). Cells are shaded ac-
cording to their value (low: green, medium: yellow, high: red). 
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Dab (Limanda limanda) 
Dab is no common target species in the Danish fishery and the economic value is low in comparison 
to other flatfish. Although quotas do only exist in the North Sea (managed together with flounder), dis-
card levels are comparatively high in all areas. In terms of survivability, experiences showed that dab 
seems to be relatively sensitive compared to other fish. At this point it needs to be stated, however, 
that very high levels of discards in combination with very low levels of discard survival might increase 
the total fishing mortality in times of the landing obligation. Additional studies to those conducted in 
the North Sea (Table A.4), were conducted by Kaiser and Spencer (1995) in the Irish Sea (survival 
rate: 24%; season: spring; gear: beam trawl (30 min); study period: 120h; observations: 22) and by 
Kraak et al. (2018) in the Baltic sea (survival rate: ~35.0-100%; season: whole year; gear: otter trawl 
(3 h); depth: 20-30 m; study period: 5-8 d; observations: 772) reporting variable survival rates over the 
year. 
 

 

Figure A.2. Average annual landings (kg) and raised discards (kg) of dab by Danish vessels for the years 
2011-2016 separated by area and fishing gear including information about discard survival based on esti-
mates from studies investigating commercial gears. 
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Table A.4. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for dab, separated by area and metier including potential estimates on discard survival 
probability from previous studies (estimates for commercially used gears in bold). Cells are colour-coded 
according to their value (low: green, medium: yellow, high: red). 
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Flounder (Platichthys flesus) 
Flounder is a species that is not targeted in the Danish fisheries and the economic value of the spe-
cies is low. Quotas do exist for flounder only in the North Sea where it is managed together with dab. 
Contrary to dab, flounder is a relatively robust species, which makes it a potential candidate for being 
exempted from the landing obligation. Further studies are, however, needed to prove this assumption. 
Only two studies about survival of flounder are published so far – one conducted in the North Sea 
(see Table A.5) and another one by Kraak et al. (2018) in the Baltic Sea (survival rate: 0.0-~95%; sea-
son: whole year; gear: otter trawl (3 h); depth: 20-30 m; study period: 5-8 d; observations: 702) report-
ing highly variable survival rates over the year. 
 

 

Figure A.3. Average annual landings (kg) and raised discards (kg) of flounder by Danish vessels for the 
years 2011-2016 separated by area and fishing gear including information about discard survival based 
on estimates from studies investigating commercial gears. 
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Table A.5. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for flounder, separated by area and metier including potential estimates on discard sur-
vival probability from previous studies (estimates for commercially used gears in bold). Cells are shaded 
according to their value (low: green, medium: yellow, high: red). 

 

- no estimates 
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Lemon sole (Microsomus kitt) 
Lemon sole is a valuable species that is occasionally targeted by Danish fishing vessels. Together 
with flounder, it is quota-regulated in the North Sea. Experiences showed that lemon sole is a rela-
tively sensitive species, but more survival experiments are necessary before an assessment in terms 
of a potential exclusion from the landing obligation is possible.  
 

 

Figure A.4. Average annual landings (kg) and raised discards (kg) of lemon sole by Danish vessels for 
the years 2011-2016 separated by area and fishing gear including information about discard survival 
based on estimates from studies investigating commercial gears. 
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Table A.6. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for lemon sole, separated by area and metier including potential estimates on discard 
survival probability from previous studies (estimates for commercially used gears in bold). Cells are 
shaded according to their value (low: green, medium: yellow, high: red). 
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Plaice (Pleurneces platessa) 
Plaice belongs to the main species in the Danish fishery and is targeted frequently by different vessel 
types. Quotas exist for all three considered areas. The number of survival studies on this species is 
relatively high, which is most likely due to its commercial importance. The general conclusions of the 
studies are that survivability is comparatively high but decreases with haul duration and air exposure. 
Furthermore, larger specimens show higher survival rates. Individual results of the studies conducted 
in Kattegat, North Sea or Skagerrak are given below in Table A.7. Further survival studies on plaice 
were conducted by Kraak et al. (2018) in the Baltic Sea (survival rate: ~5.0-100%; season: whole 
year; gear: otter trawl (3 h); depth: 20-30 m; study period: 5-8 d; observations: 738) finding highly vari-
able survival rates over the year, by Kaiser and Spencer (1995) in the Irish sea (survival rate: 39.0-
40.0%; season: spring; gear: beam trawl (30 min); depth: ~35 m; study period: 120-144 h; observa-
tions: 122), in the English Channel by Millner et al. (1993; survival rate: 63.0-94.0%; season: mix; 
gear: otter trawl (60-120 min); depth: 5-20 m; study period: >216 h; observations: 75 (19-31 cm)), Re-
vill et al. (2013; survival rate: 20.4-62.7%; season: spring; gear: beam trawl (60-120 min); depth: 60-
80 m; study period: 3 days; observations: 120 (23-62 cm)) and Morfin et al. (2017; survival rate: 45.2-
66.6%; season: January-November; gear: otter trawl (93-270 min)); depth: 19-36 m; study period: 66-
133 hours; observations: 1111 (24.127.7 cm)) and by Catchpole et al. (2015) in the North West Wa-
ters. Catchpole et al. (2015) conducted trials for different fishing gears: otter trawl (survival rate: 
64.4%; season: winter; haul duration: 2h; depth: ~36 m; study period: 66-133 h; observations: 348 
(~27.6 cm)); beam trawl (survival rate: 37.3%; season: winter; haul duration: 5h; depth: ~65 m; study 
period: 38-72 h; observations: 275 (~32.3 cm)); and trammel net (survival rate: 72.9%; season: spring; 
soaking time: 24-28h; study period: 168-342 h; observations: 168 (~33.5 cm)). An additional study 
that has been carried out by Savina et al. (2016) in the Skagerrak area concluded that damages (and 
thus likely also survivability) of fish caught in trammel nets depend on soaking time and individual 
length. 
 

 

Figure A.5. Average annual landings (kg) and raised discards (kg) of plaice by Danish vessels for the 
years 2011-2016 separated by area and fishing gear including information about discard survival based 
on estimates from studies investigating commercial gears. 
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Table A.7. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for plaice, separated by area and métier including potential estimates on discard sur-
vival probability from previous studies (estimates for commercially used gears in bold). Cells are shaded 
according to their value (low: green, medium: yellow, high: red). 
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Sole (Solea solea) 
Sole is a very valuable quota-regulated species, which is also reflected in low discard rates in most 
métiers. An experience-based assessment of sole in terms of discard survivability categorizes the 
species as being relatively robust. As results of survival studies in the North Sea (see Table A.8 for 
details) concluded survival rates to bel relatively high, there is a request for a high survivability exemp-
tion for sole for inshore trawlers in the North Sea operating within six nautical miles of the coast. How-
ever, STECF (2016) concluded that it may be appropriate to await the outcome of further studies 
within the North Sea area before taking a decision. Besides studies in the North Sea, Cabral et al. 
(2002) conducted survival experiments on sole in the Tagus estuary (survival rate: 90-100%; season: 
mix; gear: beam trawl; depth: 10 m; study period: 30 min; observations: 71) and (Revill et al., 2013) in 
the English channel (survival rate: 23.6-46.9%; season: spring; gear: beam trawl (60-120 min); depth: 
60-80 m; study period: 3 days; observations: 90 (23-52 cm)). 

 

 

Figure A.6. Average annual landings (kg) and raised discards (kg) of sole by Danish vessels for the years 
2011-2016 separated by area and fishing gear including information about discard survival based on esti-
mates from studies investigating commercial gears. 
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Table A.8. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for sole, separated by area and metier including potential estimates on discard survival 
probability from previous studies (estimates for commercially used gears in bold). Cells are shaded ac-
cording to their value (low: green, medium: yellow, high: red). 
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Turbot (Scophthalmus maximus) 
Turbot belongs to the most valuable species in the Danish fishery and is targeted by different fisher-
ies. Quotas exist for turbot in the North Sea area, where it is managed together with brill. A subjective 
assessment of the species categorizes it as relatively robust species, which makes it a potential can-
didate for being excluded from the landing obligation. A study by Basaran and Samsun (2004) investi-
gated survivability of the sub species Psetta maxima maeotica caught with gillnets in the Black Sea 
(survival rates 25-92%). Nevertheless, further studies in Danish waters are necessary to perform a 
proper survivability-assessment of turbot.  

 

 

Figure A.7. Average annual landings (kg) and raised discards (kg) of turbot by Danish vessels for the 
years 2011-2016 separated by area and fishing gear. 
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Table A.9. Total landings (kg), raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for turbot, separated by area and metier including potential estimates on discard sur-
vival probability from previous studies (estimates for commercially used gears in bold). Cells are shaded 
according to their value (low: green, medium: yellow, high: red). 
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Witch flounder (Glyptocephalus cynoglossus) 

Witch flounder is a valuable species that is occasionally targeted by several types of vessels. It is 
quota-regulated in the North Sea together with lemon sole. Based on experience, survivability of witch 
flounder is expected to be low, but survival studies are needed to test for this. 

 

Figure A.8. Average annual landings (kg) and raised discards (kg) of witch flounder by Danish vessels for 
the years 2011-2016 separated by area and fishing gear. 
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Table A.10. Total landings (kg) raised discards (kg) and average discard ratio (discard/total catch includ-
ing Min and Max) for witch flounder, separated by area and metier including potential estimates on dis-
card survival probability from previous studies (estimates for commercially used gears in bold). Cells are 
shaded according to their value (low: green, medium: yellow, high: red). 
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Most hazardous fisheries 
Within this section, most hazardous fisheries in terms of discards have been identified and extracted 
from the species catalogue. The identification followed an absolute (discard ≥ 10 t; Table 15), a rela-
tive (discard ratios ≥ 40%, Table A.11) as well as a combined approach (discard ≥ 10 t and discard 
ratios ≥ 40%; Table A.12). 
 
Table A.11. Overview of fisheries with discards ≥10000 kg. Cells shaded according to value (low: green, 
medium: yellow, high: red). 
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Table A.12. Overview of fisheries with discard ratios ≥40%. Cells shaded according to value (low: green, 
medium: yellow, high: red). 
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Table A.13. Overview of fisheries with discards ≥10 t and discard ratios ≥40%. Cells shaded according to 
value (low: green, medium: yellow, high: red). 

 

 
Species ranking and final remarks 
This document presented Danish fisheries targeting flatfish and provided information about flatfish 
species, which are of economic interest in Denmark including information about catches and discards 
from 2011-2016. It highlighted fisheries with high discard ratios of quota regulated species that will fall 
under the regulations of the landing obligation, likely becoming problematic as fish that are discarded 
by now need to be landed under the landing obligation, but earnings for those will be low. As one pos-
sibility to reduce these potential issues are exemptions for species (in specific fisheries) where 
chances to survive the process of discarding are “high”, the robustness of each single species has 
been described within the document. Higher robustness likely means a higher chance to survive the 
process of being discarded. Table A.14 summarizes the information about species´ robustness, eco-
nomic importance, and extent of discards for the Danish fishery as well as discard levels in a qualita-
tive way. It shows that it is the right approach to focus on plaice as a) plaice is a species that has 
good chances of surviving being discarded, b) it is caught in high amounts and c) is depending on the 
fishery discarded in relatively high numbers. All other species either have a likely low chance of sur-
viving, are of low economic value, thus not caught in high numbers, or are not discarded in high num-
bers. 
 

Table A.14. Qualitative ranking of flatfish species presented within the document. Symbols encode accu-
racy of statement about respective species (++: true, +: partly true, -: not true). 

Species High robustness High importance for Danish fishery Discarded in high numbers 
Brill + + - 
Dab - - ++ 
Flounder + - + 
Lemon sole - + + 
Plaice  + ++ + 
Sole + + - 
Turbot + + - 
Witch flounder - + + 
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Although estimates for catches and discards exist for each species and survival studies have been 
conducted for most of them, a final quantification of the results or a provision of a ranking order of 
these species in terms of survivability is not possible at this point because a) the number of studies 
that investigated survival of discarded fish is relatively low, b) the variability between and within stud-
ies is high and c) outcomes of studies for same species show that survival estimates depend to a 
large extent on the applied fishing method and other technical and environmental conditions (see Ta-
ble 2). For instance, survival chances of fish discarded from a Danish seiner are likely higher than 
from a trawler because fish enter the net very late during the fishing process (Noack et al., , but both 
gears belong to the same legislative category. Fish caught in a trawl spend longer time inside the net, 
thus are more stressed, get more squeezed and more exhausted, which reduces their chances to sur-
vive the following process of being brought onboard and discarded. Sound conclusions that can be 
drawn from previous studies and apply to all investigated species and all fisheries are so far that sur-
vivability decreases with longer fishing durations and longer handling times. Longer fishing durations 
mean longer times of stress and stronger exhaustion for the fish, which again leads to reduced 
chances of surviving. Longer handling times, which can be caused by larger catches or suboptimal 
handling procedures, mean longer air exposures for the fish, which eventually result in lower surviva-
bility. Furthermore, survival of plaice has been shown to depend on individual length, indicating lower 
survival rates for small than for large individuals (Uhlmann et al., 2016).  
 
As a general summary of the present study, it can be said that available data does not allow to apply 
exemption from the landing obligation in terms of high survival on specific species or fisheries be-
cause the available data basis is very low, used methodologies are very different and results are very 
variable and case specific. Therefore, more survival studies on different species, fisheries and condi-
tions in question are necessary to provide more data that can allow for an assessment if an exemp-
tion from the landing obligation is meaningful. 
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B. Pre-capture oxygen and feeding environment from stomach data analysis 
Additional details on the data analysis 
The relative contributions of the individual prey groups with each stomach standardized to 100% were 
used for the statistical analyses testing for differences in prey compositions between two groups of 
hauls from two areas or two contrasting oxygen conditions at the bottom are tested for statistical dif-
ferences. 
 
It was tested if it could be rejected that the prey compositions of the two groups are similar. The null 
hypothesis was therefore that the compositions are similar, and the alternative hypothesis thus that 
they are dissimilar: 

H0  : Prey composition 1 = Prey composition 2 

HA : Prey composition 1 ≠ Prey composition 2 

A significance level of P = 0.05 is adopted here. 
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Table B.1. Number of analysed stomachs by haul together with temperature, salinity, and oxygen content 
(average ± SD) as well as % oxygen saturation at the bottom. 

Date 
Haul 
(No.) 

Stomachs 
(n) 

Temperature 
(°C) 

Salinity 
(ppt) 

Oxygen (mg 
l-1) % sat.† Depth (m) 

Autumn (eastern Baltic Sea) 

13-10-2020 9 2 7.44 ± 0.19 7.4* 6.27 ± 0.16 52 41 

13-10-2020 10 4 7.35 ± 0.07 7.4* 6.14 ± 0.13 51 42 

13-10-2020 11 7 7.33 ± 0.07 7.4* 6.48 ± 0.10 54 40 

13-10-2020 12 12 7.31 ± 0.07 7.4* 6.31 ± 0.14 52 41 

13-10-2020 13 11 7.88 ± 0.08 7.4* 5.91 ± 0.20 50 41 

20-10-2020 16 10 n/a 6.86 ± 0.27 n/a 36‡ 65 

21-10-2020 18 31 15.33 ± 0.20 7.84 ± 0.21 3.59 ± 0.27 36 68 

24-10-2020 21 4 15.20 ± 0.16 5.75 ± 0.29 3.44 ± 0.20 34 65 

25-10-2020 22 9 15.43 ± 0.07 6.69 ± 0.29 3.56 ± 0.26 36 64 

25-10-2020 23 13 15.49 ± 0.12 5.85 ± 0.19 3.92 ± 0.10 39 63 

Winter (western Baltic Sea) 

27-01-2021 1 3 8.13 ± 0.13 7.4* 7.62 ± 0.11 64 45 

29-01-2021 6 10 7.85 ± 0.21 6.64 ± 0.10 8.19 ± 0.50 69 42 

31-01-2021 11 0 n/a n/a n/a n/a n/a 

31-01-2021 12 3 7.39 ± 0.16 8.13 ± 0.03 7.56 ± 0.09 63 43 

31-01-2021 13 14 7.45 ± 0.04 7.86 ± 0.03 7.55 ± 0.03 63 43 

01-02-2021 14 0 n/a n/a n/a n/a n/a 

02-02-2021 17 0 n/a n/a n/a n/a n/a 

02-02-2021 18 7 6.12 ± 0.52 7.18 ± 0.21 10.17 ± 0.85 82 45 

03-02-2021 20 2 6.72 ± 0.10 7.24 ± 0.18 8.81 ± 0.24 72 42 

*The salinity was not measured here. The value is the average obtained from hauls at similar depths 

†The percent oxygen saturation was obtained from https://water.usgs.gov/water-resources/software/DOTA-
BLES/ using the values of temperature, salinity, and oxygen content 

‡Temperature and oxygen content measurements were erroneous, so the oxygen saturation was calcu-
lated as the average of the values from hauls 18–23 of similar depths. 

https://water.usgs.gov/water-resources/software/DOTABLES/
https://water.usgs.gov/water-resources/software/DOTABLES/
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