First estimates of growth, mortality and recruitment parameters of Macrobrachium macrobrachion Herklots, 1851 in the Cross River estuary, Nigeria

Udeme I. Enin
Institute of Oceanography, University of Calabar, P.M.B. 1115, Calabar, Nigeria

Abstract

The growth, mortality and recruitment parameters of the brackish-river prawn, Macrobrachium macrobrachion Herklots 1851, in the Cross River Estuary, Nigeria, were estimated based on 12 monthly length-frequency samples (October 1991-September 1992). The estimated growth parameters were: L_{∞} $=12.93 \mathrm{~cm}$ total length, $K=1.79$ per year, $C=0.5, W P=0.5$ of year or $1 \mathrm{st} \mathrm{July}, R_{\mathrm{n}}=0.259$.

Total mortality (Z) was estimated at 10.6 per year, while natural mortality (M) was 3.36 per year, and fishing mortality (F) was 7.24 per year. This gave an exploitation rate (E) of 0.68 , indicating heavy fishing pressure on the stock. The yield-per-recruit analysis suggested that the exploitation rate of the fishery is well beyond the level giving optimum yields. Further research effort to ascertain these findings was recommended, to provide the basis for advancing management options for the fishery.

Keywords: shrimp, growth, mortality, estuary, Nigeria.

Introduction

Macrobrachium macrobrachion is an important species in the artisanal shrimp fisheries in the mangrove creeks, estuaries and coastal lagoons in Nigeria. In the Lagos Lagoon, it constitutes about 60% of all prawn landings, and up to 83% of all Macrobrachium fishery catches during the rainy season (Marioghae 1982, 1987). In the Niger delta, it is more commercially important to the artisanal catch in the tidal areas than Macrobrachium vollenhovenii Herklots, a related shrimp species (Powell 1982).

The systematics, ecology and the fishery of M. macrobrachion have been studied by Powell (1982) in the Niger Delta. Marioghae (1982) described the distribution and biology of the species in the Lagos Lagoon and noted the upper limit of salinity tolerance of the species to be 12 psu . Hence, in the peak of the dry season with higher salinities, the shrimps migrate from the estuaries into the fresh waters. Marioghae (1990) studied the fishing methods, gear and marketing of the shrimp in the Lagos area.

Similar to most shrimp species important to the artisanal catches in Nigeria, information on growth, mortality and recruitment parameters of M. macrobrachion are lacking. Powell (1982) highlighted this shortcoming and stressed that such
information are needed for the effective management of the artisanal shrimp fisheries relying on these species. This study attempts to estimate the growth, mortality and recruitment-related parameters for M. macrobrachion of the Cross River estuary, Nigeria.

Materials and methods

Monthly length-frequency data (total length) were collected from the landings of the artisanal fishery on Macrobrachium species in the Cross River estuary, Nigeria (Figure 1), from October 1991 to September 1992. The shrimps were caught, with push-nets and beach-seines of 1 cm mesh size throughout, in the mangrove creeks

Figure 1. Cross River estuary and the mangrove creeks.
and the mud flats of the estuarine margins. Two subsamples were obtained per month, but were later pooled into single monthly samples. The samples from the catch were sorted into species as identified according to Powell (1982). The lengthfrequency data of M. macrobrachion were grouped into $1-\mathrm{cm}$ intervals after the initial $0.5-\mathrm{cm}$ entries.

The length-frequency data were then analysed using the Compleat ELEFAN package (Gayanilo et al. 1989), a software for length-frequency analysis. The theory and assumptions behind ELEFAN programs are described by Pauly \& David
(1981), Pauly (1987) and Brey et al. (1988). The growth model used in the analysis was the seasonally oscillating version of the von Bertalanffy growth function (Pauly \& Gaschütz 1979) which has the form:

$$
L_{t}=L_{\infty}\left(1-\mathrm{e}^{-\left[K\left(t-t_{0}\right)+C K / 2 \pi \sin \left[2 \pi\left(t-t_{s}\right) I I\right)\right.}\right.
$$

where L_{t} is the predicted length at age t, L_{∞} is asymptotic length, K is the growth coefficient, C is the amplitude of seasonal growth oscillation, t_{0} is the hypothetical 'age' at zero length, t_{s} is the age at the beginning of growth oscillation. Winter point (WP $=t_{\mathrm{s}}+0.5$) is the time of year when growth is slowest (Pauly 1987).

The modified Wetherall Plot (Pauly 1986) was used to obtain an initial estimate of asymptotic length $\left(L_{\infty}\right)$. This method is based on the right-descending part of the length-frequency curve and calculates the regression equation:

$$
\bar{L}-L^{\prime}=a+b L^{\prime}
$$

L^{\prime} being the cut-off length for each size class, \bar{L} is the mean length from L^{\prime} upward, and the growth parameters are estimated as $L_{\infty}=a /-b, Z / K=(1+b) /-b$.

This estimate of L_{∞} was then seeded in ELEFAN I to optimize the estimates of the growth parameters, L_{∞} and K, of the von Bertalanffy growth function. The seeded K-value was obtained from the formula:

$$
K=3 / T_{\max }
$$

and assuming the longevity of the species to be 2.5 years. Thus K-values ranging from 1.2 to 1.5 were seeded. ELEFAN I identifies the peaks in the length-frequency samples and searches for the best combination of growth parameters ($L_{\infty}, K, C, W P$) using a goodness-of-fit index (R_{n}) (Pauly 1987).

From the final estimates of L_{∞} and K, the growth performance index (ϕ^{\prime}) of M. macrobrachion was calculated by the formula:

$$
\phi^{\prime}=\log _{10} K+2 \log _{10} L_{\infty}(\text { Pauly } \& \text { Munro 1984). }
$$

Total mortality (Z) was estimated by the length-converted catch curve procedure of ELEFAN II (Pauly 1983, 1984a, 1984b), where the percentage of samples in length groups are pooled to simulate a steady-state population.

Natural mortality (M) was estimated by Pauly's (1980) empirical formula:

$$
\log _{10} M=0.0066-0.279 \log _{10} L_{\infty}+0.6543 \log _{10} K+0.4634 \log _{10} T
$$

and using a mean environmental temperature of $29^{\circ} \mathrm{C}$ for the Cross River estuary (Löwenberg \& Künzel 1992).

Fishing mortality (F) was calculated from $F=Z-M$, and the exploitation rate (E) from $E=F / Z$, i.e. the fraction of total mortality (Z) caused by fishing mortality (F).

The probabilities of capture were estimated by means of the logistic transformation of the probabilities obtained from the lower-sized shrimp (i.e. from the left hand-side of the length-converted catch curve).

By projecting the length-frequency data backward onto the time axis down to zero length, using the von Bertalanffy growth equation and the estimated growth parameters, the recruitment pattern of the shrimp was estimated (Pauly 1982).

The modified form (Pauly \& Soriano 1986) of the Beverton \& Holt's (1964) yield equation was used to estimate relative yield-per-recruit (Y^{\prime} / R) and relative biomass-per-recruit $\left(B^{\prime} / R\right)$ for M. macrobrachion. Both the probability of selection method and the knife-edge selection method were used. From these, the values of exploitation rate giving maximum relative yield-per-recruit ($E_{\max }$) was estimated. Also $E_{0.1}$, the value of E at which the marginal increase in Y^{\prime} / R is 10% of its value at $E=0$; and $E_{0.5}$, the value of E corresponding to 50% of the unexploited relative biomass-per-recruit (B^{\prime} / R), were estimated.

Results

The monthly length-frequency data used for the estimation of growth parameters of M. macrobrachion are given in Table 1. The modified Wetherall plot gave preliminary estimates of $L_{\infty}=11.39 \mathrm{~cm}$ total length and $Z / K=3.95$ (Figure 2). From

Table 1. Length-frequency data of Macrobrachium macrobrachion of the Cross River estuary, Nigeria, October 1991 to September 1992. $\mathrm{n}=7904$.

Mid- length	1991 Oct.	Nov.	Dec.	Jan. Ja92	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.
1.45					1						1	
2.45	1	12	218	18	11	2	3	83	2	3	0	
3.45	9	119	358	231	50	20	19	451	81	36	31	7
4.45	144	138	283	431	118	37	44	439	205	110	184	110
5.45	100	142	164	303	112	33	68	283	148	160	109	115
6.45	112	152	139	133	57	23	47	116	105	147	127	196
7.45	79	97	56	47	24	14	34	30	40	44	32	76
8.45	19	40	13	9	8	5	16	11	8	12	15	22
9.45	4	8	3	4	2		1	3	3	2	2	3
10.45	3	4	1	2				1			2	
11.45	2	1		1								
Sum	473	713	1235	1179	383	134	232	1417	592	514	503	529

Figure 2. Wetherall plot for the length-frequency data of Macrobrachium macrobrachion. A: original length-frequency distribution, with points selected for the plot given as black dots; B: Wetherall plot proper, in which L (mean) is the mean length from L^{\prime} upwards; estimated parameters were $L_{\infty}=11.39 \mathrm{~cm}$ total length and $Z / K=3.95$.

ELEFAN I routines the best estimates of growth parameters obtained were $L_{\infty}=$ 12.93 cm total length, $K=1.79$ per year, $C=0.5, W P=0.5$ of year or 1 st July, R_{n} $=0.259$, using data of 1 cm class intervals. Figure 3 shows the restructured lengthfrequency data superimposed with the estimated growth curve. The growth performance index (ϕ^{\prime}) of 2.48 was estimated for the shrimp.

Figure 3. Restructured length-frequency data of Macrobrachium macrobrachion superimposed with the estimated growth curve. The estimated growth parameters are $L_{\infty}=12.93 \mathrm{~cm}$ total length, $K=1.79$ per year, $C=0.5, W P=0.5, R_{\mathrm{n}}=0.259$.

For data of $0.5-\mathrm{cm}$ length classes, the best estimated of growth parameters were:

$$
L_{\infty}=13.8 \mathrm{~cm}, K=1.5 \text { per year, } C=1.0, W P=0.5, R_{\mathrm{n}}=0.187
$$

However, because of the poor fit of growth curve to the data ($R_{\mathrm{n}}=0.187$), these estimates were not used for further analysis.

From the length-converted catch curve procedure (Figure 4), total mortality (Z) was estimated at 10.6 per year, while natural mortality (M) of 3.4 per year was obtained. By subtraction, the fishing mortality (F) of 7.2 per year was obtained. The exploitation rate (E) was estimated at 0.68 . The probability of capture routine gave an estimate of length-at-first capture (L_{c}) at 4.04 cm total length (Figure 5). The re-

Figure 4. Length-converted catch curve of Ma crobrachium macrobrachion of the Cross River estuary. Estimated $Z=10.6$ per year.

Probability of capture

Figure 5. Selection curve of Macrobrachium macrobrachion of Cross River estuary. Estimated $L_{\mathrm{c}}=$ 4.04 cm total length.

Figure 6. Recruitment pattern of Macrobrachium macrobrachion of the Cross River estuary.
cruitment pattern established in Figure 6 indicates a year-round recruitment for M. macrobrachion, but with two peaks of recruitment during one year.

Figures $7 \& 8$ show the results of relative yield-per-recruit and relative biomass-per-recruit analysis using the probability of selection method and by assuming knife-edge recruitment, respectively. The computed optimal exploitation rates are

Figure 7. Relative yield-per-recruit and relative biomass-per-recruit of Macrobrachium macrobrachion in Nigeria, using the probability of selection method (see Table 2 for estimates).

Figure 8. Relative yield-per-recruit and relative biomass-per-recruit of Macrobrachium macrobrachion in Nigeria, using the knife-edge recruitment method (see Table 2 for estimates).

Table 2. Estimates of optimum levels of exploitation rate (E) of Macrobrachium macrobrachion of the Cross River estuary, Nigeria ($L_{\infty}=12.93 \mathrm{~cm}$ total length, $K=1.79$ per year, $M=3.36$ per year, $L_{\mathrm{c}}=$ 4.04 cm total length).

	Exploitation rates		
Selection type	$E_{\max }$	$E_{0.1}$	$E_{0.5}$
Selection ogive	0.494	0.464	0.254
Knife-edge selection	0.536	0.505	0.305

provided in Table 2. The exploitation rate giving maximum relative yield-per-recruit ($E_{\max }$) was 0.494 using selection ogive, and 0.536 using knife-edge recruitment.

The exploitation rate $\left(E_{0.1}\right)$ at which the marginal increase in relative yield-perrecruit is 10% of its value at $E=0$, was estimated at 0.464 (selection ogive) and 0.505 (knife-edge recruitment). The exploitation rate ($E_{0.5}$) which corresponds to 50% of the virgin relative biomass-per-recruit was estimated at 0.254 (selection ogive) and 0.305 (knife-edge recruitment).

Discussion

The L_{∞} of 12.93 cm total length estimated here for M. macrobrachion of the Cross River estuary, Nigeria, is slightly lower than the $L_{\max }$ of 13.8 cm total length reported for the species in Nigeria (Marioghae 1982, 1987, 1990). This is acceptable since L_{∞} is supposed to be a mean value (Ricker 1975, Pauly 1981). However, Marioghae (1982, 1990) asserted that M. macrobrachion specimens in catch samples rarely exceed 12.0 cm total length. In the present analysis the largest mid-length was 11.45 cm total length.

The growth performance index (ϕ^{\prime}) of 2.48 estimated here for M. macrobrachion, will allow for interspecific comparison of growth performance among Macrobrachium and other shrimp species in Nigeria, when estimates for other species become available. The index can also be used to back-calculate L_{∞} or K for related shrimp species if either of the parameters is known.

The winter point (WP) of 0.5 indicates that growth of the animal is poorest in the period of June-July of the year. This may be due to the reproductive activity of the species which comes to a peak from July to October (Marioghae 1982), whereby ingested energy may largely be diverted into reproductive material. This same phenomenon may account for the estimated amplitude of seasonal growth oscillation ($C=0.5$).

Considering the suitability of length-frequency data used for the estimation of growth parameters for the shrimp species, a number of criteria exist for judging this. Firstly, the presence of modal groups should be discernible from the raw data (Wolff 1989), with apparent shifts in the modal length over time. These features could be observed in the length data used in the present analysis. Furthermore, Pauly (1984c) developed a system for assessing length data for growth studies, based on the need to obtain a sufficient number of measurements, well distributed over time. Pauly's rule-of-thumb provides on an increasing scale of $0-5$, the total sample size and the
number of months over which sample is accumulated. A total sample size of 1500 and above, accumulated over a period of six months and above, is regarded as excellent for such analysis (see also Hoenig et al. 1987). The sample used in the present analysis is far in excess of this criterion.

However, simulation studies have shown that growth parameter estimates from ELEFAN I are often biased due to such factors as individual variability in growth parameters, seasonal oscillations in growth, size-dependent selection, variable recruitment period and large length-class intervals used in grouping length data (Isaac 1990). The first of these factors, which is not taken into account in the deterministic VBGF, was found to be the principal source of error in K.

Isaac (1990) also showed that ELEFAN I tended to overestimate L_{∞} and underestimate K as the width of the length-class intervals increased. This tendency was not observed in the present study. Instead the 0.5 cm length intervals gave higher $L_{\infty}(13.8 \mathrm{~cm})$ and lower $K(1.5$ per year) than the 1 cm class intervals which gave 12.93 cm and 1.79 per year, respectively. The decision to use 1 cm class intervals in this study was influenced by the poorer fit of the growth curve to the initial 0.5 cm entries ($R_{\mathrm{n}}=0.187$) compared to the 1 cm class intervals ($R_{\mathrm{n}}=0.259$).

The double recruitment peaks per year obtained here conforms to the assertion of Pauly (1982) that the double recruitment pulses per year is nearly a general feature of tropical fish species. Since t_{0}, the third parameter of the von Bertalanffy growth equation, cannot be estimated from length-frequency data alone (Pauly 1987), the absolute position of the recruitment peaks in terms of month-of-year cannot be calculated. However, the position of the peaks can be inferred approximately by examining the length-frequency data used, where the peaks of the smaller sized shrimps could be noted in December-January and again in May-June.

Both the estimates of total mortality (Z) and fishing mortality (F) obtained here (10.6 and 7.2 per year, respectively) seem rather high. However, Pauly et al. (1984) obtained Z values of up to 7.07 per year for Penaeus duorarum in Florida, which is a larger species with L_{∞} of 17.6 cm total length. Mathews et al. (1987) obtained values of Z up to 7.08 per year for penaeid species in Kuwait waters. Also, Sumiono (1988) obtained values of F up to 8.99 per year in some years for Penaeus merguiensis in Indonesia.

Nonetheless, the mortality estimates might be biased upward to some extent due to the migration of M. macrobrachion to fresh waters during periods of high salinity in the estuary (Marioghae 1982). Such a behaviour in animals is known to affect the representativeness of the length-frequency data obtained from catch samples, which in turn leads to biased fishery parameter estimates (Pauly 1987), by introducing an emigration term into the right-descending arm of the catch curve (Caddy 1987). This could be observed in the length-frequency data analysed here, where specimens of M. macrobrachion in the multispecies catch samples were quite scanty during the high salinity months of February, March and April (end of dry season).

The exploitation rate (E) of 0.68 estimated here indicates that the stock of M. macrobrachion of the Cross River estuary is probably experiencing excessive fishing pressure. This is based on the assumption that in an optimally exploited stock, natural and fishing mortalities should be equal or $E=F / Z=0.5$ (Gulland 1971).

The exploitation rate ($E_{\text {max }}$) that gives maximum relative yield-per-recruit, estimated at 0.494 (probability of selection method) and 0.536 (knife-edge recruitment method), approximates the 0.5 level of exploitation of Gulland (1971), but is much smaller than the exploitation rate of 0.68 estimated for the fishery. This suggests that the stock of M. macrobrachion is probably being overfished both in terms of yield-per-recruit and biomass-per-recruit.

The analysis of mortality rates, exploitation rate, yield-per-recruit and biomass-per-recruit carried out here all suggest that the artisanal fishery on M. macrobrachion of the Cross River estuary is experiencing intensive fishing pressure. To be able to proffer an informed management advice for the fishery, further research will be needed to obtain a time series of annual catch and effort data (to capture variability in CPUE or abundance), and of size structure in the population. Research will also be needed to ascertain the influence of environmental conditions on the recruitment of the shrimp species. The uncertainty in optimal E or F introduced by this factor should be taken into account in the elaboration of the management advice (Garcia 1988). Caution and flexibility in management is expected to compensate for the uncertainty in optimum effort.

Acknowledgements

This study was funded by the Senate Research Grant of the University of Calabar, Nigeria. I thank Professor U.K. Enyenihi for his support during the study. The analysis of the data was part of the work carried out during a three-month research attachment at the Institut für Meereskunde, Universität Kiel, Germany. I am grateful to Professor Schnack and the management of the institute for providing me with laboratory space and computer time. Immense thanks also go to Dr Sylvia Opitz and Frau Brigitte Rohloff for their personal support. My sincere gratitude goes to GKSS Geesthacht GMBH, a German Agency and its director, Mr H. Bianchi, for funding my stay in Kiel. Mr Timothy Okon, my field assistant, helped in the length-frequency measurements.

References

Beverton, R.J.H. ऊ̋ S.J. Holt, 1964: Tables of yield functions for fishery assessment. - FAO Fish. tech. Pap. 38. 49 pp.
Brey, T., M. Soriano \& D. Pauly, 1988: Electronic length-frequency analysis: a revised and expanded user's guide to ELEFAN 0, 1 and 2. (2nd Ed.) - Ber. Inst. Meereskunde, Kiel, 177. 31 pp.
Caddy, J., 1987: Size-frequency analysis for crustacea: moult increment and frequency models for stock assessment. - Kuwait Bull. mar. Sci. 9: 43-61.
Garcia, S., 1988: Tropical penaeid prawns. - In J.A. Gulland (ed.): Fish population dynamics (2nd ed.), pp. 219-249. John Wiley \& Sons, London.
Gayanilo, F.C., M. Soriano \& D. Pauly, 1989: A draft guide to the Compleat ELEFAN. - ICLARM Software 2.70 pp . ICLARM, Manila.
Gulland, J.A., ed., 1971: The fish resources of the ocean. - Fishing News (Books) Ltd., Surrey. 255 pp.
Hoenig, J.M., J. Csirke, M.J. Sanders, A. Abella, M.G. Andreoli, D. Levi, S. Ragonese, M. Al-Shoushani or M.M. El-Musa, 1987: Data acquisition for length-based stock assessment: report of Working Group I. - In D. Pauly \& G.R. Morgan (eds): Length-based methods in fisheries research, pp. 343352. ICLARM Conf. Proc. 13. ICLARM, Manila.

Isaac, V.J., 1990: The accuracy of some length-based methods for fish population studies. - ICLARM tech. rep. 27.81 pp .
Löwenberg, U. ঞr T. Kïnzel, 1992: Investigations on the hydrology of the lower Cross River, Nigeria. Anim. Res. Develop. 35: 72-85.

Marioghae, I.E., 1982: Notes on the biology and distribution of Macrobrachium vollenhovenii and Macrobrachium macrobrachion in the Lagos lagoon (Crustacea, Decapoda, Palaemonidae). - Rev. Zool. Afr. 96(3): 493-508.
Marioghae, I.E., 1987: An appraisal of the cultivability of Nigerian palaemonid prawns. - ARAC/87 /WP/4. UNDP/FAO/NIOMR, Lagos. 12 pp.
Marioghae, I.E., 1990: Studies on fishing methods, gear and marketing of Macrobrachium in the Lagos area. - NIOMR tech. Pap. 53. 20 pp.
Mathews, C.P., M. Al-Hossaini, A.R. Abdul-Ghaffar \& M. Al-Shoushani, 1987: Assessment of shortlived stocks with special reference to Kuwait's shrimp fisheries: a contrast of the results obtained from traditional and recent size-based techniques. - In D. Pauly \& G.R. Morgan (eds): Length-based methods in fisheries research, pp. 147-166. ICLARM Conf. Proc. 13.
Pauly, D., 1980: On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. - J. Cons., CIEM 39(2): 175-192.
Pauly, D., 1981: The relationships between gill surface area and growth performance in fish: a generalization of the von Bertalanffy's theory of growth. - Meeresforschung 28: 251-282.
Pauly, D., 1982: Studying single-species dynamics in a tropical multispecies context. - In D. Pauly \& G.I. Murphy (eds): Theory and management of tropical fisheries, pp. 33-70. ICLARM Conf. Proc. 9. ICLARM, Manila.

Pauly, D., 1983: Length-converted catch curves: a powerful tool for fisheries research in the tropics Pt. 1. - Fishbyte 1(2): 9-13.
Pauly, D., 1984a: Length-converted catch curves: a powerful tool for fisheries research in the tropics Pt. 2. - Fishbyte 2(1): 17-19.
Pauly, D., 1984b: Length-converted catch curves: a powerful tool for fisheries research in the tropics Pt. 3. - Fishbyte 2(3): 9-10.
Pauly, D., 1984c: Fish population dynamics in tropical waters: a manual for use with programable calculators. - ICLARM Stud. \& Rev. 8. ICLARM, Manila. 325 pp.
Pauly, D., 1986: On improving operation and use of the ELEFAN programs. Pt. II. Improving the estimation of L_{∞}. Fishbyte 4(1): 18-20.
Pauly, D., 1987: A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrates. - In D. Pauly \& G.R. Morgan (eds): Length-based methods in fisheries research, pp. 7-34. ICLARM Conf. Proc. 13. ICLARM, Manila.
Pauly, D. N. David, 1981: ELEFAN 1, a BASIC program for the objective extraction of growth parameters from length-frequency data. - Meeresforschung 28: 205-211.
Pauly, D. \& G. Gaschütz, 1979: A simple method for fitting oscillating length growth data, with a program for pocket calculators. - Demersal Fish Ctte, ICES CM 1979/G: 24.
Pauly, D., J. Ingles \& Real, 1984: Application to shrimp stocks of objective methods for the estimation of growth, mortality and recruitment-related parameters from length-frequency data (ELEFAN 1 and 2). - In J.A. Gulland \& B.J. Rothschild (eds): Penaeid shrimps - their biology and management, pp. 220-234. Fishing News (Books) Ltd., Surrey.
Pauly, D. \mathfrak{G} J.L. Munro, 1984: Once more on the comparison of growth in fish and invertebrates. Fishbyte 2(1): 21.
Pauly, D. © M.L. Soriano, 1986: Some practical extensions to Beverton and Holt's relative yield-per-recruit model. - In J.L. Maclean, L.B. Dizon \& L.V. Hosillos (eds): The first Asian fisheries forum, pp. 491-495. Asian Fish. Soc., Manila.
Powell, C.B., 1982: Fresh and brackishwater shrimps of economic importance in the Niger Delta. - In Proc. 2nd ann. Conf. Fish. Soc. Nigeria, Calabar, 25-27 January 1982, pp. 254-285. FISON, Lagos.
Ricker, W.E., 1975: Computation and interpretation of biological statistics of fish populations. - Bull. Fish. Res. Bd Can. 191: 382 pp.
Sumiono, B., 1988: Estimation of growth and morality in banana prawn (Penaeus merguiensis) from the south coast of Java, Indonesia. - In S.C. Venema, J.M. Christensen \& D. Pauly (eds): Contributions to tropical fisheries biology, pp. 68-88. FAO Fish. Rep. 389. FAO, Rome.
Wolff, M., 1989: A proposed method for standardization of the selection of class intervals for lengthfrequency analysis. - Fishbyte $8(1)$: 5 .

