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Abstract
This study addresses the heterogeneity of the preY environment perceived by a predator. The interrupted

Poisson process (IPP) is presented as a starting point for modelling predator encounters with patchy

prey. This theory is introduced thoroughly since it appears to offer a new entrance to modelling preda

tor—prey interactions. The basis of the theory tepresents a coupling of the ciassical patch and prey en

counter models of foraging theory. Specifically, the predator encounters prey in a Poisson process (1.

parameter) but only while foraging in a food patch. The Poisson process is interrupted during expo

nentially distributed periods of interpatch travel (2. parameter). Patch residence times are also consid

ered exponentially distributed (3. parameter). The interencounter times in this IPP become hyperexpo

nentially distributed with a coefficient of variation, which is related to the index of dispersion for

counts (IDC). Analytical expressions for such measures of the variability in encounters are derived and

interpreted in relation to simple scenarios of patchiness. Using spherical patch geometry the IPP-para

meters are derived for a cruising predator. The probability distribution of patch residence times is de

rived analytically as a function of intrapatch foraging speed and the patch radius. The effect of be

havioural aspects is introduced and the optimum intrapatch foraging speed is derived in an example.

The theory is exemplified with larval fish as predators.

Keywords: interrupted Poisson process (IPP), hyperexponential distribution, index of dispersion for

counts (IDC), spherical patch geometry, foraging cycie, predator—prey encounters, optimal foraging.
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Introduction
Very little is known about the specifics of predator—prey encounter events, since
they usually cannot be observed in situ and therefore cannot be addressed without
a unifying theory (see Rothschild 1986, 1988 for a discussion of this challenge).
Thus, there is a need for simple models, which can be fully theoretically analysed
and interpreted. ‘Model unit’ designates such a simple (stochastic) theory element
and defines a starting point for the quantification of predator—prey encounters with
an ultimate aim of understanding trophodynamic interactions in the sea. Apart
from simplicity and inherent analytical tractability, a basic requirement for such a
model unit is that its parameters can be interpreted biologically.

Animals (and particies) are flot raridomly distributed in space (for the small scale
see e.g. Cassie 1959, and Owen 1989), which indicates that random encounters can
flot be described by homogeneous Poisson processes (PPs). On the other hand some
predators most likely encounter prey at local scales approximately at random (e.g.
Vlymen 1977). Hence a minor extension to a process that locally is Poissonian
should be of benefit. This approach has been successfully applied in other areas
where the subcomponents of the process can be observed. In telecommunications,
for example, measurements of cails offered to an overflow trunk group exhibit more
variability than the smooth traffic that would be generated by a simple Poisson pro
cess. Howevei this variability can be adequately described simply by introducing
random periods of process interruptions (Kuczura 1979). In telecommunication
theory such a pattern is termed an interrupted Poisson process (IPP). In recent years
the IPP and similar processes have been used exterisively to model sources, which
generate traffic in an on-off patterfl (e.g. Heffes & Lucantoni 1986). The preseflt
study introduces the IPP to biology as a possible means of creating a new theoretical
basis for modelling prey—predator encounters in a wide ecological sense but with
special reference to the marine environment. With this perspective the overall aim
here is to present a thorough introduction to the stochastic IPP-theory.

The paper considers an iridividual predator’s encounters with patchy prey (see
Figure 1) without corisideririg the possible causes of patchiness and without expli
citly quantifying the relative velocity of predator—prey and the other components
underlying the effective searching rate of any specific type of forager. However, a
conceptual example with a cruising predator (see Comment 8 (Comments constitute
separate blocks for explanatory reasons or exemplifications)) introduces the link be
tween this IPP-theory and simple encounter theory and spherical patch geometry. In
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7
such patch scenarios we also derive analytically the probability distributions of the
time to first feeding (see Comment 9), which have bearings to the understanding of,
for example, aspects of the early-life dynamics of marine fish. Furthermore, the prob
ability distribution of patch residence times is derived analytically as a function of
intrapatch foraging speed and the patch radius distribution (see Comment 10). These
resuits for a cruising predator in spherical patch scenarios are finally used to intro
duce behavioural aspects and the optimum intrapatch foraging speed is derived when
the reactive distance of the predator decreases with increasing speed (see Comment
11). These examples (Comnients 8-11) serve merely as an introduction to the poten
tial applications of the theory. The IPP model unit represents a building stone and
more specific applications and elaborations will be considered in subsequent studies.

This study deals only with the basic theory. We specifically consider functional
heterogeneity, i.e. heterogeneity as perceived by the predator rather than spatial
heterogeneity measured at some arbitrary scale (see Kolasa & Rollo 1991 for dis
cussion of this terminology). In doing this we adopt some of the concepts from for
aging theory (see Figure 2) and assume that a predator encounters food patches in

Figure 2. The foraging cycie. Sequential encounter is assumed
SO the forager enters a patch residence period after an inter
patch travel (search) time and, during the patch residence time,
it encounters prey items sequentially one after the other (which
could also be illustrated by this figure with patch time replaced
by, e.g., handling time). After Mcnair (1983) (redrawn).

Figure 1. Illustrating a three-dimensional distribution of patchy prey and showing the track of a forager

It encounters six prey on the track jo the cube. Redrawn after Beyer (1982) and Rothschild (1988).
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Figure 3. An individual realization of the predator—prey encounter process when it is governed by a
Poisson process (PP) with intensity p= 1, i.e. with a mean interencounter (= interarrival) time of i and,
alternatively, when it is governed by an interrupted Poisson process (IPP) (or aH2-process) with p 8/11
and intensities y1 = 4 and Y2=l’3,i.e. also with mean interarrival time of 1 time unit. However, the co
efficient of variation (c.v.) of the interarrival times for these patchy IPP-encounters is twice the c.v. for
the non-patchy PP-encounters (which are characterized by mean = standard deviation, i.e. by c.v. = 1).
Note, for example, the patchy encounters at the beginning of the shown IPP-realization: (1.515, 1.624),
(2.775, 2.779, 2.822), 3.116 etc. The exponential and the hyperexponential p.d.f.’s of the interarrival
times in the PP-case, respectively the IPP-case are shown in Figure 5.

a Poisson process and once inside a patch, that it also encounters individual prey
items in a Poisson process (see Stephens & Krebs 1986 for a review of the patch
and prey models in foraging theory). The present work deals only briefly with the
two basic problems in foraging models: which prey items to consume and when to
leave a patch (Stephens & Krebs op. cit.; Comment 11). We consider instead only
encounters with one prey type and disregard for example possible density-depen
dent effects. In most of this study it is assumed that a predator leaves a patch at ran
dom at a rate, which is independent of, for example, the number of prey encoun
tered, i.e. the patch residence times are exponentially distributed. Considering these
elements together leads to the IPP because the process of encountering prey by an
individual predator is interrupted by random periods of interpatch travel.

The outcome of such an encountering process is a signal comprising the points
in time of the individual encounters. Figure 3 illustrates two such examples for cases
of PP-encounters (i.e. non-patchy prey) and of IPP-encounters (i.e. patchy prey).
With PP-encounters the interarrival times (= interencounter times), X, are exponen
tially distributed (E1), i.e. with probability density function (p.d.f.) specified by one
parametei À0, the intensity or rate of encounters:

g(x) = Ao.esx. (1)

The IPP-encounters lead to more dispersed interarrival times (i.e. with c.v. >1),
which are hyperexponentially distributed as discussed below in the next section, i.e.
with probability density function described by three parameters (see Figure 4),

f(x)=pyieYix+(1_p)y2e72x ; O<p<1. (2)

This mixed exponential distribution has been used as the simplest patchy exten
sion of the exponential or random model in Eq.1 (Rothschild 1991, but sec also e.g.
Cox 1962, Cox & Isham 1980, and, Nielsen 1988 and references herein, for an in
troduction). In the literature this hyperexponential distribution is often symbolized
as H2, a symbolism which we retain in this presentation.
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Figure 4. The probability density function (p.d.f.) of the hyperexponential distribution, II2, and how it
depends on the mixture (specified by p) of the two underlying exponential distributions, E1(y) with
mean = standard deviation = 1/’y, (i = 1,2). When p decreases from 1 towards 0 theH2-curve moves from
the ‘y1 - exponential curve, turning about the common E-point, I, (without maintaining the exponential
shape) towards they2-exponential curve. As p changes the dispiacement of the intercept, À, the intensity
of encountering prey items in a patch and, the displacement of E (X), the mean interencounter time (be
tween encouritering consecutive prey items) are indicated by the p-arrows parallel to the ordinate and
the abscissa, respectively. Such a change of H2 towards the exponential density for the smallest y-value
actually takes place for the p.d.f. of the residual interarrival time when it is known that an encounter has
flot yet taken place after a specific period of time. This is a memory effect built into theH2-distribution
because it is only the exponential distribution, which is Markovian or memoryless (see Comment 1).

Comment 1: TheH2-process and pitfails in its interpretation
The El2 distribution in Eq 2 thus provides an alternative specification of the
IPP. In the terminology of stochastic processes each encounter forms a renewal
point and theH2-process is by definition a renewal process in which the inter
vals between renewals are H2 distributed The biological interpretation of this
process is flot that simple in contrast to the random PP or Eq i in which the inten
sity Å0 is proportional ot in some other way directl) hnked to the local density
of prey. For example, considering Yi » Y2 implies that the interencounter times
associated with Yi are less than those associated with but this does flot neces
saryly imply a greater number of encounters associated with The relative
number of encounters of the two sources is determined by the parameter p, e.g.
with p sufficientiv small (almost) al! the encounters will be associated with 2
whether or flot Yi »Y2. Secondly, considering again Yi » Y2, it is misleading to
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interpret theH2-process as describing a predato which is foraging in an envi
ronment where Yi relates to the prey density in patches and ‘Y2 relates to an in
terpatch density. This point is best explained by first noting that any hyperex
ponential variable correctly can be considered as an exponentially distributed
variable in which the intensity is chosen with a known probability, i.e. the hy
perexponential distribution is a compound distribution (see e.g. Pielou 1969
for further explanations of this terminology). In this setting the conditional dis
tributions are exponential distributions whereas the intensities are discretely
distributed. Returning to the proposed (misleading) patch scenario, suppose a
predator was dropped in such an environment at random with the result that
it occupies a patch with probability p and an interpatch area with probability
i

—

p. Then, assuming the predator can not leave the area without catching a
prey item, the time interval until the first prey is encountered will be hyperex
ponentially distributed with the y’s relating to the prey densities in the two
types of areas but, immediately after each encounter, a new random placement
of the predator must take place, which in reality disqualifies this scenario. If
such a replacernent does not take place then an encounter does not become a
renewal point, which invalidates the interpretation. In next section a useful in
terpretation of theH2-process is suggested, which relates to the one-patch type
of environment with no food outside patches (but which also is quite different
from the interpretation of the IPP-process).

Finally the important equivalence between exponentially distributed time in
tervals and Poisson-distributed numbers of encounters in a given period of time
is unique for the PP. Although an exponential distribution of time intervals is
equivalent to Poisson-distributed numbers of encounter events, a compound ex
ponential is not equivalent to a compound Poisson, i.e. it is incorrect to relate
the mixed (or hyper) exponential time-interval distribution to a mixed Poisson
distribution for numbers. The mixed Poisson distribution contains the Poisson
distribution as a special case just as theH2-distribution contains the exponential
distribution as a special case (Yi = Y2, p — 0 or p —i) but this represents the
only strict resemblance to the Poisson-exponential equivalence. The exact dis
tribution of the numbers of encounters in the IPP or theH2-process is flot a
mixed Poisson distribution and furthermore, it can apparently not be expressed
in terms of nice looking analytical expressions for known distributions in any
simple way (see Comment 7).

As an example, Figure 5 shows that, because of the pararneter richness in Eq. 2, (in
finitely) many p.d.f.’s exist with the same mean and the same variance (and, hence,
constant c.v.). However, the parameters of theH2-distribution in Eq. 2 are difficult to
interpret biologically in any straightforward manner (cf. the attempts by Rothschild
1991, 1992) and a basic point of this study is therefore that theH2-distribution ofin
terarrival times does flot (biologically) constitute our starting point but instead the
distribution of interarrival times is derived as a consequence of the IPP-model, which
is specified by the three biological parameters associated with the foraging cycie (see
next section; Figure 6). Nevertheless, in the next section we also suggest a direct in
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Figure 5. Examples of probability density functions (p.d.f.’s) of individual interarrival times when the mean
interarrival time equals one. The exponential distribution, Ej(p= 1), implies that the predator encounters
(non-patchy) prey items at random (in a homogeneous Poisson process) and the coefficient of variation,
cv., is also one (standard deviation = mean = hp =1). The hyperexponential distribution, H,(y1,y2,p),
refers to encounters with patchy prey and, since it is described by three parameters, many different situa

tions may give rise to the same mean and variance. The two p.d.f.’s shown have both c.v. = 2 (i.e. standard
deviation = 2 . mean = 2). The top H2 with most probability mass ciose to zero (i.e. intercept Å= 3 when

= 4, y = 1/3 and p = 8/11) is used as a recurrent example in this study. Tt differs from the other H2 shown
(i.e. the one with initial value or intercept Å= 1.75) by having a greater 3. moment (see Nielsen 1988, p.
131). Tt is of note that the Ei-distribution must tail off faster than any of theH2-distributions (not shown).

terpretation of theH2-parameters in terms of patchiness and a decision assumption
(which refers to a choice the forager, on encountering a prey item, is assumed to make
or that natural selection has made for it (e.g. Stephens & Krebs 1986)).

The analytical relationships between the parameter set of H2 in Eq. 2 and that of
the IPP (and vice versa) are presented (see Comment 4). The mean and variance of

p.cl.f.
3

H2(p=8/11y1=4,y2h/3)

H2(p=6/7, =2, Y2=1/4)

E1(p = 1)

0 i 2
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H2-distributed interarrival times are also given. In addition, we also consider the
coefficient of variation (c.v.) of theH7-distribution as a measure of functional hete
rogeneity. Tt is shown that functional heterogeneity (= c.v. ofH2-distribution) at
tains a maximum when the predator on average spends the same amount of time
moving in patches as on travelling to locate patches.

Secondly, we consider the counting process of the number of prey encountered
during a specific period of time. This number is of course known (by definition) to
be Poisson-distributed in the PP case but in the case of the patchy IPP the distribu
tion of numbers does flot belong to any of the well-known discrete distributions, al
though some analytical resembiance to the mixed Poisson distribution is demon
strated. The mean and variance in this counting process are derived from renewal
theory and presented on a closed analytical form as simple functions of the IPP
parameters. The index of dispersion for counts (IDC), which is defmed as the van
ance to mean ratio in the counting process is used through out as a relative measure
of the variability. Asymptotically IDC equals the c.v. squared for the interencounter
distribution and thus constitutes an alternative measure of functional heterogeneity.
As an example on the potential applications of the IPP-unit we consider the princi
pal effects of patchy prey on the prey encounter rate for a cruising predator. We
specifically put emphasis on the variability in counts (IDC). In a simple 3D-patch
scenario the IPP-parameters, the time to first feeding, the distribution of patch resi
dence times and the optimum intrapatch foraging speed are also considered as men
tioned above (Cornments 8-11).

This stud)’ is technically oriented because a proper introduction and presen
tation of the TPP predator—prey-encounter theory involves for example both IPP
andH2-terminology. Tt also must indicate how and why, e.g. the distributions ob
tained differ from standard approaches such as the Poisson distribution or the neg
ative binomial distribution. Such explanations and interpretations, which in prin
ciple can be considered independently of the main flow of the paper, are collected
in Comments 1-7. Tt is, thus, possible and recommended to read the paper in dif
ferent ways.

Comment 2: The non-Markovian property of theH2-process
The ‘lack of memory’ or Markov property constitutes the fundamental property
of the exponential distribution (or of the PP) Tn the context of the encounters
between an individual predatoi and its prey items, the implication of exponen
tially distributed interariival times is that whether a long time has passed or Just
a short period of time since the last encountet, the pi obabihty that an encounter
will take place during the next small interval of time is constant and propor
tional to the rate of encounters (see also Coniment 3). Tt is this independence of
the past, which makes the exponential distribution attractive in its simplicity
(and, which explains its many applications because in the limit the PP describes
the superposition of many different and independent (but general) point pro
cesses (see e.g. Cox & Isham 1980)). The hyperexponential distribution does
flot possess this property (as will be shown mathematically below), which ex
plains wh it becomes more difficult to analyse aH2 piocess (cf Comment 1)
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Mathematically the Markov property is expressed by the following requirement:

P{X>t+ujX>u}=P(X>t}

where X denotes the interarrival time and the distribution functions are (ob

tained by integrating the p.d.f.’s in Eqs i and 2),

P{X> t} = e_Dt ; X€E1(Ao)

P(X>t} = p.eYit + (1—p) et ; X€H2(p,y1,y2)

In the exponential case the Markovian requirement is fulfilled because

P{X> t+ u X> u) = P{X> t+ u}I P(X> u) = e_Ao(t+uo)Ie_Åou = e_Aot = P(X> ti

That is, the remaining (or residual) interarrival time is stil! exponentially dis

tributed with unchanged intensity, À0, in complete independence of the amount

of time, u, which is known to have elapsed since the last encounter.

Inserting instead in P(X> t + u} / P{X> u) the distribution function for H2 and

rearranging yields

P{X> t+ u X> u} = pr,. + (1 —Pa) Po = /?

where

= p1 [p + (1 —p) e(YzYi)J

so when Y2> Yi then p <p < i as 0 <u <00.

If ‘Y > Y the inequality is replaced by 1 —P < i —p,, < 1. As p,, p it follows

that the Markov property is not fulfilled but instead

P{X>t÷u X>u} > P{X>t) ; XH2(p,y1,y2).

A probabilistic interpretation of this result (which is valid also for hyperexpo

nential distributions with more than two phases (Nielsen 1988)) is related to

considering H2 as a compound distribution, i.e. p represents the prior probabil

ity for selection of the (exponential phase with) intensity Yi. After some time,

u, without an encounter the probabilities of selecting the phases (or intensities),

change from p and i —P into the weighting factors p and 1— p but the

(Markovian) exponential phases do not change (i.e. the intensities, y and Y2,

remain constant). Thus, the remaining (residual) interarrival time becomes

H2 (p, ‘yi, Y) -distributed and p1, represents the posterior probability for selection

of the intensity ‘y. The result states that when some of the interarrival time is

known already to have elapsed then this fact increases the probability that the

actual exponential distribution (= phase) is governed by the smallest intensity,

which again means that the mean residual time is greater than the mean (in

terencounter) time. The chance of obtaining a very long interarrival time hereby

increases. In Figure 4 thisH2-memory effect imp!ies that the p.d.f. of the resi

dual inrerarrival time is obtained by turning the density about the cross-point

(I) towards they2-exponential density (which is memoryless).
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As an example, consider a specific encounter as the starting point and sup
pose the predator does flot encounter a prey item during the first unit of time
although the mean interarrival time also is I time unit. If encounters take place
in a Poisson process (see PP-realization in Figure 3) then the interarrival time is
governed by the (memoryless) exponential density in Figure 5 and the expected
residual interarrival time is also I time unit so the expected duration of the en
tire interval becomes 2 time units. Howevet if encounters take place, say, in a
H2(p = 8111,Yi = 4,-y2 = 1/3)-process (see IPP-realization in Figure 3 with p.d.f.
in Figure 5, top) the mean interarrival time is still i time unit but (with u = 1,)
Pi = 0.064 so the expected residual interarrival time becomes 0.064 -1/4 +
0.936 3 = 2.82 and, hence, the expected duration of the entire interval in this
case becomes 3.82 (i.e. almost 4 times the average interarrival time, which is
twice as long as in the PP-case). The prior probability p = 0.727 of encoufitering
the next prey item with the highy1-rate has decreased by more than a factor of
10 and this change has occurred only because the interarrival time is known to
exceed 1. The maximum effect of this length biased sampling in time (involving
a mean residual time of Y21 = 3) has almost been reached because u = i exceeds
the relaxation time, which is j — Y2 or 0.3 (cf. thep1-formula).

It is important to note that the Markov property of the exponential distribu
tion implies that, in case of PP-encounters, the residual interarrival time (which
in the terminology of renewal theory is known as the forward recurreflce time)
always is exponential distributed with unchanged parameter. Thus, considering
PP-encounters with intensity A =1 and sampling a predator at a random point in
time, the forward recurrence time (= residual interencounter time = the time until
the next prey item would have been encountered had the predator flot been sam
pled) and the backward recurrence time (= the time since the last encountei
which has implications for stomach content studies) are hoth exponentially dis
tributed with mean i time unit. Thus, just as in the above case of knowing that
the interencounter time exceeds u time units, the mean length of intervals sam
pled at random in the PP is also 2 time units, i.e. a bias of 100% compared to

= 1, the true mean length of the time intervals in the process. However sam
pung the non-MarkovianH2-process at a random point in time, the forward and
backward recurrence times become alsoH2-distributed with intensities y1 and Y2but with another weighting factor (which is further explained in Comment 7),

Prand = p/[p + (1—p)- Y1/Y21
=

____

That is, Prand is obtained by replacing the factor exp (— (y — y1)u) with Y1/Y2 ifl
the denominator of the expression for p. The distributions become equal, p,t =
Prand, only in the special case of U = (Yi— ‘y2)1 ln(’y1/’y2). Considering again
H2(p=8/li,Yi 4,Y2 1/3)yie1dsprand=8/(8+312)=2/1i(i.e.theprob-ability of selecting an interval governed by the largest phase has decreased by a
factor of four), which produces a mean (forward or backward) recurrence time
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of 2.5 time units, i.e. the time intervals associated with random points in time

will show a mean length of 5 time units although the true mean interval only is

i time unit in the underlyingH2-process. This bias of 500% clearly does flot

disappear by increasing sampling. Tt simply occurs because a long interval (= in

terencounter time) is more likely to be sampled than a short interval. In general

for a point process, the mean length of the intervals sampled equals the mean

interval (= mean interarrival time) raised by a factor of one plus the c.v. squared

of the interarrival times and, the residual interencounter time likewise is ob

tained by using half this factor, i.e. in mathematical notation I-Lsamp = /1(1 + c.v.2)

and Pres = ,u(1 + c.v.2)/2.

The interrupted Poisson process (IPP)

We consider one predator, which is foraging in an environment containing food

patches. This implies that at any point in time the predator is characterized by being

in one of two possible environmental states, which we label 0 and 1:

state 0: non-patch (i.e. predator on interpatch travelling)

state 1: patch (i.e. predator doing patch residence)

The process alternates between the two states and the patch model is completed (see

Figure 6) by assuming that the predator encounters patches at random at rate w2

and that the duration of patch residences is exponentially distributed with mean

4A

Figure 6. Transition diagram for the interrupted Poisson

process (IPP) model Unit. The forager encounters prey items ifl

a Poisson process (PP) at rate À but only while it occupies state w2

i (patch). The event ‘a prey eficounter’ represents a transitiofi,

which is flot associated with a state change. The average patch

residence time is 11w1, ic. a transition from state I to state 0

(interpatch travelling) occurs with ifitensity w1. In state 0 the o
forager does flot eficounter any prey and transition to state 1

occurs with intensity w2.

i/w. The equilibrium probability distribution (see e.g. Cox & Miller 1965) be

comes

‘To = wi /(w1 + w2), ‘ni W2/(Wj + w2) (3)

where ir may be interpreted as the proportion of time spent in food patches when

the foraging behaviour of an individual predator is studied over a long period of

time time. An alternative empirical interpretation of the equilibrium distribution is

that r1 denotes the fraction of the total number of predators, which, at some fixed

(but arbitrary) point in time, is foraging inside patches.
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Comment 3: The patch model foraging unit
The two-state Markov process, which controls the times spent by the individualforager in and outside patches, may be specified by alternating sequences of mutually independent (time interval) random variables, which are exponentiallydistributed with mean = standard deviation = 11w, (i = 0,1). An alternative specification of the process is in terms of the actual transitions between the twostates. A predator which at time t is in state 0 (non-patch), encounters a patchin (t, t + At) with probability w2At (hereby neglecting the factor 1 + 0 (At) because O(At) vanishes for infinitesimal small At), independently of ali occurrences before t. Similarly, if state i (patch) is occupied, transitions to state 0occur at the constant rate w1. This simple representation of the foraging environment of the predator does not distinguish between specific patches of foodparticies. In principle food is considered to occur in such patches only. Residence in any of the patch areas simply implies occupancy of state i in the model.The parameter w2 denotes the rate at which a predator encounters patches.‘Encountering’ refers to physicai proximity but the operational definition,which is possible in a general study of the IPP model unit, is to consider a parch
encounter as the forager is passing the only entrance into the food environment.Thus immediately after a patch encounter the forager is in a position to encounter prey items. A patch encounter in this model does flot imply that the for
ager encounters an individual prey. The forager may actually pass through apatch without encountering any prey items. Thus patch encounter simply means
that the patch comes within, for example, the visual range of the foragei which
will depend on foraging behaviour, the conspicuousness of the patch, its geometrical properties etc. The rate of encountering patches (as weil as the rate ofencountering prey items inside patches) clearly depends on the searching behaviour of the predator, the motility of prey and on the passive relative motion
of predator—prey caused by, for example, turbulence (Rothschild & Osborn
1988). Principles for simple applications of the IPP model unit are introduced
in a later section (see also Comments 8-11) but further considerations must be
tailored to specific predator—prey cases and considerations beyond ‘encounter
ing’ (such as responding to encountered prey; attacking; prey escapement; pur
suing prey; ingestions) are also outside the scope of this paper. Patch residence
times or the point in time at which a predator leaves a patch may likewise be
considered as an exponential variate of intensity wi.

Considering the dynamics of the process, let ir (t) (i 1,2) denote the state
probabilities at time tand assurning the initial conditions, (O) and 7r0(O) = 1—
ir1(O) to be specified, we obtain (e.g. Cox & Miller 1965),

1r(t) = 1rj + [7r1(0) —
. ei’z

‘7r0(t) Wo + [iro(O) —
.

Thus the relaxation time is (wj + w2)’, which measures the speed at which
the process reaches stationarity (i.e. the probability distribution is governed by
ir0 and ‘r1 independently of the initial conditions).
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The forager is considered flot to encounter prey items on interpatch travelling.
When state i (patch) is occupied, the forager encounters prey items ifl a Poisson
process at a constant rate, Å. This completes the prey model and the IPP-model unit
is thus specified by the three parameters A, w1, w2 (Figure 6).

The IPP process is stochastically equivalent to a H2 renewal process and the re
lationship between the parameters is given by (Kuczura 1973)

À =p Yi + (1—p). Y2

À+wi+w2=yi+y2 (4)

A = Yi Y2

Thus, starting with the IPP specification, the interarrival time becomes H2-dis-
tributed with parameters (p, ‘y) (Figure 7) and, hence, with p.d.f. given by Eq.
2. Figure 8 gives a graphical representation in one dimension of this parameter
transformation, i.e. through Eq. 4 the figure shows the relationships that p, Yi and
Y2 bear to each of the three IPP-parameters (assuming the two other constant). For

Figure 7. Phase diagram of hyperexponential distribu
tion with two phases (H2). The exponential phase
governed by intensity ‘yi is selected with probability p

and, similarly, Y2 is selected with probability I —p.
The distribution is therefore also known as the mixed
exponential distribution. It governs the interencounter
(= interarrival) times in the IPP model unit, ic. IPP —s
II2. In the reverse argument, H2 —* IPP, a renewal pro
cess is defined by aH2-model. A consistent biological
interpretation of theH2-parameters is as follows: on
each prey encounter the forager stays in the patch
with probability p (and thus encounter the next prey
item at rate y( or it leaves the patch with probability
i —p and encounters the next prey item (and, hence
the next patch) at rate Y2.

example, Figure 8 (mid panel) shows that, when the intensity of leaving a patch, w1,
increases for constant intensities, w2 and A, of encountering patches and prey items
inside patches, the largest intensity of the two exponentialH2-phases, Yi, increases
almost linearly but the smaller intensity, Y2, and p decrease towards zero. In the ex
treme, w1 —* 00, the forager leaves a patch immediately before having had a chance
of encountering a prey item and then spends, on average, 1/w2 units of time on
searching for the next patch. Translated intoH2-terminology, as w1 — cc the chance
of selecting the first phase vanishes; so although the time required to encounter a
prey item through this phase actually becomes very small, l/y — 0, this event is
flot taking place because of p — 0 and phase 2 is instead chosen with probability i
but 11Y2 — co so the interencounter time becomes infinitely large.
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Alternatively, a renewal process is specified by H2(p,y1,’y2) from which the
parameters of the equivalent IPP-process likewise can be obtained through Eq. 4.
Starting with theH2-process specification, Figure 9 shows similarly the relation
ships that the IPP-parameters bear to each of theH2-parameters. With reference
to Figure 7 we interpret theH2-renewal process in the following way assuming
without loss of generality that y1 > Y2. On each prey encounter, the forager de
cides whether to stay in the patch or to leave: with probability p it stays and the
probability of encountering the next prey item in that patch is then governed by
the first phase, i.e. the interarrival time is exponentially distributed with mean
l/’y. With probability i — p it leaves the patch and the time required to encounter
the next prey item (and hence a patch) is governed by the second phase, i.e. the
interarrival time is exponentially distributed with mean lIY2> lIy. This inter
pretation of theH2-parameters in relation to the interpretation of the IPP-para
meters is useful for understanding the IPP-H2equivalence shown in Figures 8 and
9. For example, Figure 9A shows how the IPP-parameters depend on p assuming
constant y’s. For p —* 0, in the H2 patch interpretation, a forager leaves with cer
tainty a patch after the first prey encounter and thus encounters prey items in a
PP with intensity Y2. The translation into IPP becomes A —* Y2 and wi — 0 be
cause the IPP interpretation flow is that the forager stays in a (big) patch in order
to be able to encounter prey in a PP at rate Å = Y2. At the other extreme, p — 1,
the forager stays ifl a patch and encounters prey in a PP at rate Yi, which ifl IPP
terminology again requires wi—* 0 (and, of course, A — yi). This is why the rate
of leaving patches w1, artains a maximum (at that intermediate value of p for
which À = w,).

Figure 8. IPP —s II2 parameter representation: The equivalentH2-parameters depicted against each of
the input IPP-parameters (assuming the two others constant). A: The dependency of the probability p
(dimensionless) of selecting the first exponenttal phase (of ifitensity y,) on the IPP-parameters (with di
mension of TIME’). It is of note that the patch concept in the ifiterpretation of p as the probability of
staying in the patch unril the next preY encounter is different from the IPP-patch coricept. B: The de
pendencies of the y-intensities (with dimension of TIME—1)on the IPP-parameters. The largest y-in
tensity, which represents the rate of encountering prev within a patch in theH2-interpretation, y,, bears
an almost (= asyrnptotical as shown) linear increasing relationship to each of the IPP-parameters. The
situatlons refer to the equivalent IPP-parametets for the H2 case in Figures 3 and 5 (top), i.e. A = 3, v,
= 8/9 and w2 = 4/9. The trends in the relationships can (with some care) be understood intuitively from
the interpretations of the parameters. For example, when the rate of encountering patches iflcteases,
‘2 — , right panel, the forager locates a new patch immediately and therefore in reality encounters
prey in a Poisson process (= PP) at the constant rate À. This extreme situation is achieved in the H2-
model when the forager on each prey encounter decides with certainty (i.e. i —p — 1) to leave the patch
and then encounters the next prey (and patch) with intensity Y2 = À. Anorher example (mid panel) is
the y,-increase when the forager on average leaves a patch before encountering prey (i.e. w —s ) in
which case Y2 — 0 is selected in almost all cases (i.e. i —p —s 1). However, in some rare cases the forager,
by tandom chance, will succeed to encounter two prey items during one very short patch residence and
such (rare) evefits are described by the high (but with p —s 0 very seldom) y,-rate.
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H2—* IPP

Figure 9. H — IPP parameter representation: The relationship of IPP-parameters to each of the input

H2-parameters, i.e. the tate of encountering patches (w2), the rate of encountering prey when foraging
in patches (Å) and the rate of leaving patches (w1) depicted (A) versus the phase probability p assuming
constant intensities, yi and y2; and (B) versus one of the exponential intensities, Ti, assuming the other,

Y2, and p constant. b ali cases the intensity of encountering prey À increases linearly with increasing
value of theH2-parameter. The situations refer to theH2-paramerer values of Figures 3 and 5 (top), i.e.
yi/y2=l2in(A)andp=8/11 in(B).
A: Tt is of note that w1, the rate of leaving patches, attains a maximum at that p value for which patch
encounters occur at the same rate as prey encounters (when foraging in a patch), i.e. À = (02. Note also
that A W2 is constant (= ‘y Y independently ofp). Identical average sojourn times jo and outs ide patch
es, 1/wi = 1102, occurs whenp= p,orp = 1— p, (wherep = % (1 —[1 _4yz/y2/(yI/y2_1)2]’2), which
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Comment 4: Stochastically equiualent prey encounters but biologically different
patch encounters and interpretations in the IPP and theH2-process

In a concrete case, specifying the IPP model unit, Eq. 4 offers an alternative
specification in terms of the parameters of theH2-distribution, which governs
the interencounter times in the IPP. Such a pure transformation of parameters
may be convenient for example in studying the moments and other statistics of
the time intervals (= interencounter times). The rion-trivial parameter relation
ships in Eq. 4 may be expressed in several ways and explicit equatiofls for the
IPP —* H and the H2 — IPP transformations are given below. Howevei other
expressions may be derived from Eq. 4, which are equally useful such as

p =(À—y2)I(y1—y2)

A’w1 =P(1—P)(y1—y2)2

• W1+(02 =P.y2+(1—P)•y1

IPP — H:

-

(A — — (1)2) + + w + w2)2
— 4Aw

- 2 V(A+ °iw2)2—4Åw2

• Yi = 1/2[(À + Wi + W2) + + w + w2)2
— 4Àw21

+ 1 + (02) — + w +
— 4Aw21

H2 —* IPP:

(Å = PYi + (1- P)’Y2)

P(i—P)(Y1—Y2)2 (Y1—Y2)2=
py1+(1—p)y2

1—p p

Y1Y2 i=
Py]+(1—P)y2 =

1—p

implies that the forager spends more time in patches than outside patches, 11w1 > 11w2, independently
of the value ofp if 0.17=3—2\/< Yi’Y2 < 3 +2VT= 5.83).
B: When Yi Y2 = y theH2-process is reduced to an ordinary PP at rate y = À = w2 and the rate of leaving
patches, w1, becomes zero. The symmetry of p about 1/2 (because of interchanging y-parameters) implies
that the graphs for the IPP-parameters versus the second exponential intensity, Y2, are similar with p re
placed by i —p. It is of note that the intensity of encountering patches, w2, bears a Michaelis-Menten
type of relationship to Yi (and, of course, also to yz). The asymptotic approach of w1 to a straight line
is also indicated on the figure. The graph shows the existence of two ‘yi-values between which w1 < w2.
These values at which w1 = w2 are = Yz [1 + 1/2p(1 —p).(1 ±V1 + 4p(1 —po) or 0.145 and 6.90 (flot
shown) in the present case. Without loss of generality due to y-symmetri, y1 has been selected to repre
sent the largest of the y-intensities in this study.
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In addressing the question on the biological difference between stochastically
equivalent IPPs andH2—processes this comment is devoted to gaining more
insight into the processes by analysing Figure 9B and using theH2-example,
which now can be translated into an ipg i.e.

p =8/11 A =3
H2: ‘>‘j = 4 IPP: w1 = 8/9

‘/2=1/3 w2=4/9

Starting with theH2-process the comparison with the equivalent IPP (spe
cified to the right) is instructive. First it is necessary to consider the basis and
the suggested biological interpretation (see Figure 7) of the two types of inter
vals. Type 2 intervals, which are selected with probability 1— p = 0.27, are on
average Y1/’Y2 = 12 times longer than type i intervals. The occurrence of such
a type 2 interval means that the forager has entered a patch by encountering
a prey item in this patch. The concept of patch encounters is flot considered
explicitly in the H2 interpretation. A type-2 interval in reality contains three
subperiods; one for time spent on actually leaving the patch (since the last prey
encounter), an intermediate one for interpatch travel and, one for efltering the
new patch (until first prey encounter). As an example, the actual series of
interval types underlying the realization of the H2-process or of the IPP in
Figure 3 is,

2121111111212111111211211

where ‘1’ refers to a time interval (and, hence, a prey encounter) generated by
the phase ‘/i and, similarly, ‘2’ to phase ‘/2. Square brackets indicate individ
ual patch residences each starting somewhere in a 2-interval (i.e. the ‘2’ rep
resents the first prey encountered during a patch residence) and ending some
where in the beginning of the next 2-interval (i.e. the last ‘1’ before this next
‘2’ represents the last prey encounter). The simulation in Figure 3 was gener
ated in this way, i.e. first drawing the type of the interval and secondly, the
time for its exponential duration. The important point is that theH2-process
and the IPP are stochastically equivalent because the point processes of prey
encountering (Figure 3) are identical (being governed by the same renewal
process). But the processes are biologically different with respect to the inter
pretation of encountering patchy distributed prey. For example, foraging in a
patch, the predator encounters on average ‘/i = 4 prey items per time unit in
the H2 interpretation but only À = 3 items in the IPP interpretation. A realiza
tion of the interval types (such as the one shown above) can flot be translated
into a realization of state ‘0’ (non-patch) and state ‘1’ (patch) occupancies for
the IPP. Figure 9B illustrates this point because when ‘/i increases, the above
‘1 and 2’ interval series continues to represent a realization of theH2-phase
process (being governed entirely by p, which remains constant) but the patch
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interpretation in the associated IPP changes drastically at the same time. For
example, (reducing Yi by, e.g. a factor of 10), Yi Y2 implies w1 0 and À

Y2 so in the IPP; the forager stays in a patch and encounters prey at rate Y2.

With increasing y’, the length of time intervals of type i (and, hence, the patch
residence time in the H2 interpretation) are reduced proportionally. Figure 9B
shows that the average patch residence time in the equivalent IPP, 1/w, like
wise decreases for increasing Yi. When w1 = w2, which occurs for Yi = Y2
[i + i I 2p(i — p) (i + + 4p(1 — p))], the c.v. (or index of dispersion) of the
prey interencounter time attains a maximum (see Comment 5). When Yi COfl

tinues to increase (beyond the present case, which produces w1 = 2w2), then A
P’Yi, i (i— P)Yi but, the intensity of encountering patches, w2, only in

creases slightly (which makes sense because Y2 is constant) towards ‘Y2/P. That
the average patch residence time, 17w1, approaches 1/(1 — P)Yi can be explained
by the series of type ‘1 and 2’ intervals in the following way. The number of
(consecutive) 1-intervals during a patch residence is geometrically distributed
(i.e. probability of i 1-intervals = p’(i — p); i = 0,1,...) with mean pI(1 — p). The
mean number of prey items encountered during a patch residence is this number
plus the first prey encountered, i.e. I + p1 (i— p) = 17(1 — p). Multiplying with
the average length of a 1-interval, 1I’y1, gives the asymptotic expréssion for the
average patch residence time, 17w1, which again iridicates the equivalence be
tween the two patch interpretations but only in the extreme cases.

The mean and the variance of the interencounter time are obtained in the standard
procedure (e.g. Rothschild 1991) and using the p.d.f. of theH2-distribution in Eq.
2 the resuits become

p 1—p i 1w1÷w2\
=—.( ) (5)

Yi Y2 A \ W2 /

p 1— p ‘ / p p 1 2Åw1 “ w1 +
V(X)=2. —+ )---—+ + )). (6)

Yr Y2 Yi Y2 A

Dividing the variance by the mean squared gives the coefficient of variation
squared of the interencounter times, [c.v.(X)]2,which constitutes an index of dis
persion (ID) for the time intervals,

ID = 1 + 2p(1—p) ( Y’ — Y )2

= i
+ 2Àw1

2 = IDC). (7)
PY2+ (l—p)y1 (w1+w2)

in a renewal process this ID = [c.v. (X)j2 becomes equal to the asymptotic index
of dispersion for counts (e.g. Cox & Isham 1980), IDC, which is considered in
the section ori the counting process. For this reason it is convenient to introduce the
IDC terminology and IDC is considered the appropriate measure of functional
heterogeneity in this study.

In considering the dispersion index as a function of the IPP-parameters, using
the last expression in Eq. 7, it is of note that IDC, increases linearly with À, the
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intensity of encountering prey within patches, assuming constant intensities of en
countering and leaving patches. This trend is expected because whether an in
crease in Å is caused by an increase in prey density and/or, for example, by higher
relative velocity of predator and prey (Rothschild & Osborn 1988), the result is
a greater contrast in the prey environment perceived by the forager per unit of
time and, hence, larger functional heterogeneity. If, howevei the density of patch—
es increases and/or the relative velocity between forager and patches increases, the
intensity of encountering patches, w2, likewise increases (assuming constant in
tensities of encountering prey inside patches and of leaving them) but, then func
tional heterogeneity will decrease. This decrease in dispersion index happens be
cause the forager spends less time on interpatch travelling and thus encounters a
more and more homogeneous prey environment as w2 increases. Finally, assuming
constant rates of encountering patches and of prey within patches, the forager
stays in a patch if w1 = 0 and, hence, encounters prey in a non-patchy PP resulting
in the minimum value of one for the dispersion index. At the other extreme, w1
—* QO the forager spends ali the time outside patches and the dispersion index
again becomes one (i.e. encountering prey in a PP at rate zero). Figure 10 shows
that the dispersion index attains the maximum at the balance point in the rates of
encountering and leaving patches, w = w1 = w2. This maximum increase in disper
sion equals1/2À1w so, for example, everything equal, fewer but more dense patches
gives rise to much higher functional heterogeneity if the forager on average spends
equal amount of time in the patches as on interpatch travelling. The special log
like symmetry of the IDC-curve (see Figure 10) implies that exactly the same dis
persion index results with an average patch residence time (11w1) of, say, half or
twice the interpatch travelling time (11w2).

Alternatively, using the first expression in Eq. 7, Figure 11 shows the situations
when the dispersion index is considered a function of the Hz-parameters. For con
stant phase intensities, the forager encounters prey in PP’s when the same phase al
ways is selected, and hence the dispersion index in Figure i 1A attains its minimum
value of 1 at the extremes, p = 0 and p 1. Maximum dispersion occurs at p =

Y1I’y2/(l + YIIY2) and Figure hA shows the changes in this maximum for increas
ing values of the ratio ‘YIIY2. If instead p and, for example, the smailest phase (Y2)
are constant then IDC increases as the largest phase, Yi, increases. This situation is
shown in Figure 11B and it has resemblance to the situation for increasing À because
Yi, the largest phase denotes the rate of encountering prey items in theH2-patch in
terpretation.

Comment 5: Index of dispersion and functional heterogeneity
In this study the term functional heterogeneity refers to the variability in en
countering prey items as experienced by the individual forager Absolute van
ability of interencounter times as measured by, e g V(X) or Stdv (X) =

must be considered relative to the mean mterencounter time, E(X), to obtam
a relative (dimensionless) index, which is why the coefficient of variation,
c v(X) = Stdv(X)IE(X) is useful for the present purpose of quantifying van
ous degrees of patchy encounters (i e c v (X) >1) compared to random encoun
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Index of dispersion

Figure 10. The coefficient of variation squared or the index of dispersion of the interencounter time in

the IPP depicted against the intensity of leaving a patch, w, for fixed intensities of encountering patches

(wz) and of encountering prey items in a patch (À). The index equals the asymptotic index of dispersion

for counts, which is denoted by IDC,. This measure of functional heterogeneity attains a maximum

with equal rates of encountering and leaving patches. The maximum value is determined by the rate ratio

of encountering prey items in a patch to encountering patches. The index of dispersion approaches the

minimum value of i for the Poisson process at the exrremes. Log-like curve symmetry about w1 = w2 and,
the point of infiexion for sv1 = 2w2 are indicated. For relative comparison the linear course of the mean
interencounter time, E(X), is shown (although the position of its intercept, 1/À, is arbitrary because of

different dimensions (i.e. TIME versus the dimensionless IDC)).

ters (i.e., c.v.(X)=1). We choose to use the standard deviation to mean ratio
squared because it equals ID C, the index of dispersion for counts defined as
the (asymptotic) variance to mean ratio for the counting process (as discussed
in next section) In case of random encounters (i e PP) the number of encoun
ters (counts) during a fixed period of time is Poisson distributed, i e with a
variance to mean ratio, IDC(t) = i independently of t. Other indices of van

2À
Slope =

(c.v.(x))2

+ _q_
(1+q)2w2

1
‘sÀ

sv2 2w2 qw2

sv1 (IPP.parameter)
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ability will flot be considered or discussed in this study (see Elliott 1977 for a

basic introductiori to contagious distributions and frequently used indices of

variability).
The rest of this comment is devoted first to interpretations of the mean and

the variance of the interencounter time in the IPP, E (X) and V(X), in com

parison to in the PP. Secondly, Figures 10 and 11 on fDC, = V(X)![E(X)]2=

[c.v. (X)]2 versus one of the parameters (assuming the two others constant) are

further exemplified and, suppiemented with considerations ofIDC versus one

of the IPP-parameters assuming constant mean interencounter time, E(X), (and

that, only one of the remaining two IPP-parameters is constant).

The mean interencounter time in Eq. 5 can be obtained directly as E (X) = 1/

(À’ir1) because Air1 denotes the intensity in a randomly diluted PP (7r1 being the

fraction of time the forager spends in patches during which it encounters prey

items in a PP at rate A).
The variance in Eq. 6 may be expressed as the mean squared plus a contri

bution, which accounts for how much the hyperexponential distribution dcvi

ates from the exponential distribution

V(X) = [E(X)]2 + 2 w1 / Aw,2 = [E(X)]2 + 2p(1 —p) (l/yi — 1/’y2)2.

If ‘y1 = y (or wi = 0 see Figure 9B) the second term vanishes and V(X) =

[E (X)]2 or c.v.2 = 1 because theH2-distribution becomes an exponential distri

bution (or the IPP becomes a PP). For fixed ‘y’s the maximum deviation from

the exponential case (which occurs for p 0 and p =1) takes place for p = YiI ( Yi
+Y2). For this value of p both phases have the same contribution to the mean.

The deviation is also proportional to the difference in phase means squared. In

the example p = 8/11, 1/’y1 = 1/4 and l/y2 = 3 (or A = 3 and w1 = 2w2 8/9),

E(X) = i and the additional contribution to the variance becomes 3.
IDC tails off slowly for increasing w1, sec Figure 10. The decrease is 25% at

= 3w9 and the 50% point is reached at w1 = (3 + 2V2)w2or when the aver

Figure 11. The coefficient of variation squared or the index of dispersion of the interencounter time in

theH2-renewal process (stochastically = IPP) depicted against one of the Hz-parameters for the two other

fixed. This index, which is a measure of functional heterogeneity, equais the asymptotic index of disper

sion for counts denoted by
A: the index attains a maximum as a function of p, the probabi1it of seiecting the exponential phase

with intensity ‘yi The maximum is attained at a point where the two phases have the same contribution to

the mean. The minimum value of 1, which governs the Poisson cases for the extreme values ofp, is fixed

and the ‘y-dynamics of the maximum is shown by the stipied curve. When Yi = Y2, prey items are encoun

tered in a Poisson process and the dispersion index becomes 1 for ali values of p. The symmetry about p

1/2 (associated with interchanging y-parameters) is indicated by the movements of the maximum.

B: for increasing y1 the dispersion index approaches an asvmptotic value, which is the maximum for

p >1/, (eg. the graph reflects the situation for p 8/11). The asymptotic approach is slow; the infiexion

point and the 50%-point are shown and specified. For decreasing values of p, the left part of the curve

(i.e. for 71< 72) would move up (higher index) and the right part (ic. for yi > y) would move down,

but, maintaining the minimum of 1 for Yi = 72. For p = 2/2 the extremes coincides (i.e. the index becomes

3 both for Yi = 0 and for yj —*o). This is just another way of showing the symmetry, i.e. the y’s can be

interchanged by replacing p with i
—

p. In this study we assume for simplicity that y’ > 72.
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age patch residence time, 11w1, is reduced to (3
— 2V2). 11(1)2 or 17% of the

mean interpatch travel time. In the example w’ = ‘12w2’, which coincides
with the infiexion point of the curve, and IDC. = i + 4/9 Aw2’or 4 (with A =

3 and W2 = 4/9). The maximum IDC for w1 = (02_I becomes 4.375. The ex
ample case w11 = 1/2 w21 and the case of w = 2w2-1 both have IDC = 4 or
c.v. = 2 but the mean interencounter time, E(X), decreases from 1 to 1/2. Withl
increasing intensity of encountering prey, A, IDC,. also increases but E(X) de
creases. If, for example, À increases by a factor of 10 from À 10 w2 as on Figure
10 to A = 100w2 (e.g. denser patches) then the maximum dispersion also in
creases almost by a factor of 10. Figure 10 is also representative for this situa
tion if the unit level for IDC and the slope of the E(X)-line both are reduced by
a factor of 10.

The maximum of IDC, on Figure 10 for W1 = w2, assuming A and 2 COfl
stant, is different from the maximum of IDC on Figure I 1A, assuming con
stant y’s. In the example the maximum on Figure 1 1A becomes 6.04 and occurs
at p = 12/13. Considering instead p and 72 constant, the asymptotic maximum
of IDC on Figure 11B for increasing becomes 6.33. Tt is of note that the
H2-distribution of the prey interencounter times for 71 — o has IDC = (1 +

—
p) and degenerates towards an atom in zero with probability mass p

and, for interencounter times >0, the unchanged exponential density (for the
second phase) with mean 1/72.

Tt is instructive to consider the dispersion index for constant mean interen
counter time, i.e. for t constant in

= E(X) = 1IÀ (1 + w11w2) or À = 1/ (1 + w11w7).

With the aim of considering the equivalence to Figure 10 of the dependency
of IDC. on the rate of leaving patches, Wi, but with constant À replaced by
constant p, Eq. 7 is rewritten,

IDC = 1+2w1/2Àw22= 1+2/w2• Wl/(02 (i+wl/w2).

When the rate of leaving patches, Wi, increases, assuming constant i. and a
I constant rate of encountering patches (2), the rate of encountering prey in

patches, À, must increase linearly with Wi (to keep constant) and the disper
sion index increases towards an asymptotic value of 1 + 2/tw2,which becomes
5.5 in the example. Alternatively, and perhaps more realistically, suppose p and
Å are constant when wi increases, then the rate of encountering patches must
increase in proportion to Wi (to keep p constant), W2 = Wi I(pA —i), and, the
dispersion index will decrease,

IDC = 1+2(i—1/A)2ÀIw1.

The asymptotic decline towards the minimum value of i represents a PP of
rate 1/tt because the forager is shifting incredibly fast between state 1 (patch)
and state 0 (non-patch) virtually without realizing the patchy environment (i.e.
wi —> oo and w2— oo but with wl/w2 constant). Translated intoH2-notation,

i this asymptotic situation is described by i
—

p = i, ‘Y = 1/ (and p = 0, ‘y —* bo).
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The counting process

The important variable for potential growth and survival is N2, the number of prey
items a forager encounters during a specific period of time, t, when the process of
encountering prey items is governed by an IPP(À,wi,w2)or by the equivalent
H2(p, ‘y1, Y2) distribution of the interencounter times.

The mean and the variance for the number of counts in the time-stationary pro
cess can be obtained from renewal theory (Cox 1962) yielding (e.g. Heffes & Luc
antoni 1986),

Àw2
E(N) = t (8)

CV1 + (V

Àw2t 2À2w1cü2t F 1 i
V(N) = + 3 Ii — (1— e_(wi*z)t) I (9)

w1÷w2 (w1+CV2) L (w1+w2)t i

and, hence, the variance to mean ratio or the index of dispersion for counts, IDC(t),
which is shown graphically in Figure 12 as a function of time,

2Àw1 F i i
IDC(t) = V(N2)/E(N2)= 1 + , Ii — (1— e_(wt0z)t) I (10)

(w1 + w2)- [ (w1 + w2)t j

For t large compared to (w1 + w2) the exponential term vanishes and the approach
towards the asymptotic index of dispersion for counts, IDC. in Eq. 7, then becomes

Index of dispersion
Åw, IDC,

1+2
2 I

(w,÷cü2) 12.5%

fin units of

Figure 12. The variance to mean ratio of counts in a period of time, t, or IDC(t), the index of dispersion
for counts depicted as a function of time in the time-stationary IPP. The dispersion index increases to
wards an asymptotic value, IDC . The difference between this maximum and the actual IDC diminishes
inversely proportional to time, i.e. to Ca. 3 decimal places, IDC(t) = IDC— 2Àoi/[(o1+co2)3tjwhen
t5/(wi + w2). The relationships between IDC,. and each of the IPP or Ha-parameters are shown in
Figures 10 and 11. The graph refers to the example, i.e. IPP(À = 3, w1 = 8/9 and w2 = 4/9).
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inversely proportional to t, i.e.

IDC(t) IDC
— 2Åw1

t»
i

(11)
(Wi+W7) t

where the IDC -relationships, which the maximum bears to each of the IPP or the
H2-parameters, are shown in Figures 10 and 11. The results in Eqs 8-11 refer to the
time-stationary situation, i.e. the period of time considered, (0, t), starts at a ran
dom point in time. Hence, at time 0 the predator is foraging in a patch with prob
ability

‘ = w21(w1 + or it is travelling interpatch with probability o =
(w1 + w2). In either case the predator is locally encountering prey in a Poisson pro
cess (at rate A, respectively, 0), which is why the IDC curve in Figure 12 starts at I
for t = 0. The speed of the asymptotic approach is determined by the total intensity
of encountering and leaving patches, wi + w2.

If the period of time instead starts exactly at a point in time at which the forager
has encountered (a random) prey item then N refers to the number of counts dur
ing a period of time, t, in the so-called event-stationary process. In this case the
predator is known to be foraging in a patch at time 0 and IDC(0) = 1. The asymp
totic approaches for “ent(Nt and IDCevenr(t) will be different com
pared to Eqs 8-11 but IDC as given by Eq. 7 is also the asymptotic maximum in
the event-stationary process. In the following the more precise notation Nc for
event-stationary case is assumed understood and N is simply used.

Comment 6: Variability in the counting process.
A process is in equihbrium or time statlonary if it has been running a long time
before observation starts (t = 0) or if it is being observed from (t = 0) at a random
point in time Tt follows from equihbrium renewal theory (Cox 1962) that the
asyrnptotic mean number of encounters equals tIE (X) and the asymptotic van
ance (ie Eq 9 for large t) equals t V(X)I[E(X)]3plus a constant where E(X)
and V(X) are the mean and the variance of the interencounter times as given by
Eqs 5 and 6. This explains that the asymptotic variance to mean ratio of the
number of counts (= renewals) becomes equal to the coefficient of variation
squared for the interencounter time, i.e. V(N)IE(N) V(X)I[E(X)12.

The event-stationary case implies that an encounter has just taken place at
time 0 Followrng the general procedure of Laplace transfoiming moments in
the counting piocess, which is shown by Cox (1962), decomposing and reai
ranging, the mean and the variance of the number of counts in this case become

Àw2t Àw1
Eevent(Nt) = +

2
(1— e_(12)t)

(w1 + w2) (w1 + w2)

Aw2t I Aw1 4A2ww \
17 (7’T i —

_____________

i

_______________

—

_______________

Ievent i ti — 4 \ —(w1 + w2) (w1 + w7)- (w1 + w2)
2tA2w1w7

+ (1e’ia)
(w1+w2)

w12A2 I
+ ji — 2t (w1 + w2) e(w12)t — e_Z(w12)t

(w1+w2) ‘
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In comparing, for example, the means in the two cases it is instructive to con
sider the expected number of counts ina small interval of time (i.t). In the event
stationary case the important point is that the forager is known to occupy state
1 (patch) at time 0. It does flot really matter whether or flot an encounter has
taken place at time 0 because of the lack of memory property of the exponential
interarrival distribution in state 1. Considering a first order approximation the
probability of encountering i prey item during zt is Àzt or (neglecting the prob
ability of encountering two or more prey items in this small interval of time),
Eevent(Nt) = 1 Àzt, which is the result above (using i — exp(—x) x for x
small). In the tirne-stationary case, Eq. 8, ir1 is the probability of being in state
1 at time 0, and the result becomes similarly E (N) = 1Àt.

In the example, A = 3 and w1 = 2w2 = 8/9 (or p = 8/11, 71 = 4 and 72 = 1/3),
the mean and variance of the counts in the two cases become

E(N) =t

V(N1) = 4t — 9/4 (1 — e413 t)

= t + 3/2 (1 — e413 t)

= 4t — 3/4 + 3 e t_ 9/4 e8 t —3 t e

After 5 units of time the exp-terrns have virtually vanished so Eevent(Nt) =
E(N) + 3/2 and Veent(Nt) = V(N) + 3/2 fort> 5. The probability distributions
for the number of counts are shown in Figure 13 in both cases.

The mathematical expression for the exact probability distribution of the number
of encounters, N, is complicated and cannot be formulated in a simple analytical
way as a function of well-known distributions. Figure 13 gives an example of how
the distribution develops as time progresses in the time- and the event-stationary
cases. The distributions can be regarded as asymptotically normal with mean and
variance proportional to time, t, (cf. Eqs 8 and 9 for the time-stationary case) and,
the index of dispersion for counts rapidly approaches IDC as given by Eq. 7 (cf.
Figure 12). However, the example in Figure 13 demonstrates that the distributions
are considerably skewed and hence do flot show resemblance to normal distribu
tions (during the first ca. 20 units of time) although the mean and variance (already
after ca. 5 units of time) are almost represented by the asymptotic expressions. In
many applications the tail probabilities are of importance and the dynamics of the
transient behaviour is then likely to be of more significance than the (asymptotical)
normal behaviour. It is difficult to obtain exact expressions for the right tail. How
ever, the left tail, in particular the probability of zero counts, is more easy to handle.

No encounrers or the event {N = 0} occurs if the interencounter time exceeds t,

i.e. the event {X>t}. Using renewal theory (see Cornment 7) and denoting by
p(0,t), (i = 0,1), the probability that a forager, which occupies state i at time 0,
does flot encounter any prey items during the interval of time (0,t), yields,

p1(0,t) =P{N=0I foraginginpatch(statel)att=0)
= p.e-Yit+(ip).e-Yzt (12)
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Frequency

0.1!

0.1

0

0.1

0.1

0
0

TIME STATIONARY

5 units of time

10 units of time

15 units of time

20 unhts of time

Number of prey encounters

Frequency
EVENT STATIONARY

5 units of time

Figure 13. The probability distributions of the total number of prey encounters during 5, 10, 15 and 20
units of time in the stationary IPP(À = 3, aï = 8/9, ru2 = 4/9) or H2(p = 8/11, y1 = 4, y = 1/3) renewal
process. The left column refers to the time-stationary situation, i.e. the period of time starts at a random
point in time. The right column refers to the event-stationary situation, i.e. the period of time starts im
mediately after an encounter has occurred. Thus at time 0 the predator is foraging in a patch in case of
the event-stationary distributions. Compared to the case of time-stationary distributions this event of
being in a parch implies a smaller probability of flot encounrering any prey items the effect of which
shows op in the first bar for zero counts (and also in the last bar for cumulative counts at 40+). The
probabiliry distributions can flot be expressed in a simple way analytically and were instead obtained
based on simulating 100 000 realizations of the H2(p = 8/11, y = 4, y = 1/3) process over the period of
time in question. As t tends to tnfinity the distributions are asymptotically normal (Cox 1962).

0.1

I

10 units of time

15 units of time

0.1

20 units of time

Number of prey encounters
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p0(O,t-) = P{N = 0 interpatch travelling (state 0) at t = 0)

= Y2
+ e . (13)

Y2Y1 Y1-Y2

The first situation represents the event-stationary case andp1(0,t) is simply ob
tained as P{X>t} directly from theH2(p,y1,y2)distribution because the lack of
memory property of the PP (governing prey encounters in a patch) makes the in
terencounter time (assuming an encounter at t= 0) stochastically equivalent to the
residual interencounter time (= forward recurrence time) (assuming being in a patch
at t = 0 but without an encounter at t = 0; see Comment 2). If, alternatively, the for
ager at t=0 is in the interpatch area then, according to Eq. 13, the residual interen
counter time is not H2 distributed because the weighting factor associated with the
largest y-intensity is negative (and, consequently, the other factor exceeds i by the
same amount). In fact Eq. 13 is the tail probability of a generalized Erlang distribu
tion with intensities y1 and Y2. This distribution occurs when considering sums of
independent exponentially distributed random variables (e.g. Cox 1962, Nielsen
1988). Thus it is interesting to note that the probability distributions of the time
until the next encounter are governed by the same two exponential variables; in the
case of the predator being in the interpatch area at time t = 0, it is the sum of these
variables (Eq. 13), whereas in the case of the predator being in the patch area at
time t = 0, it is just one of these variables (Eq. 12) chosen with probability p and
i —p, respectively. The generalized Erlang distribution is an underdispersed distri
bution (c.v. < 1) while the H2 distribution always is overdispersed (c.v.> 1). We have
no intuitive biological interpretation of this shift in distributional properties as the
conditioning scenario changes, though some analytical insight in the phenomenon
can be gained by considering the time until the first encounter as a two-dimensional
phase-type distribution (Nielsen 1988, pp. 38-43).

In the time-stationary case the period starts at a random point in time so state i
is occupied at t = 0 with probability ir (see Eq. 3) and, hence, p (0, t) = p i(O, t)

+ iro.po(0,t), yielding

p(0,t) = P{N=0 t=0 is a random point in time)

1-p

7’l Y2 -

—

_____________

. + e . (14)
p 1—p p 1—p

—+

Yi Y2 Yi Y2

This tail probability, p(0,t), belongs to aH7-distribution, but the weighting fac
tor associated with the smallest y-intensity has increased compared to the event
stationary case described by Eq. 12. This implies p(0,t) >p1(0,t) as reflected by the
difference in the first bars (for N= 0) in Figure 13 (because of the non-Markovian
property of the H2 distribution — see Comment 2).

Tt appears from Eqs 12 and 14 that the probability of zero counts in the IPP in
the event and time-stationary cases can be expressed as a probability for zero counts
in a mixed Poisson distribution (with parameters yit and y2t). Unfortunately, this
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is not true for the probabilities of non-zero counts. Since the time- dependent terms
in the expression for PN = n) (see Comment 7) are the time- dependent terms of
the mixed Poisson distribution with parameters y1t and y2t it is tempting to search
for some analogy. Nevertheless, in spite of the inherent analytical equivalence sev
eral discrepancies must be noted. First a normal distribution constitutes the limiting
distribution of the number of counts in any renewal process with finite mean and
variance in the interarrival time distribution. However, the limiting distribution of
the mixed Poisson distribution is a mixture of two normal distributions (which will
be birnodal when yit and y2t are flot too ciose). Secondly, the mixed Poisson distri
bution and other well-known discrete distributions such as the negative binomial
are well suited as models for describing individual random variables. Thus the
weighting factor in the mixed Poisson distribution (denoted by u in Comment 7)
represents the probability of a once for ali choice, e.g. considering the prey-encoun
ters of predators, which spend whole life in area with prey density proportional to
y, (see also Comment i in relation to special (and misleading) ‘y1-associated prey
density interpretations of theH2-renewal process). This is in contrast to the IPP or
H2-renewal process where the predator dynamically moves between areas with dif
ferent prey densities. The mixed Poisson distribution is thus valid as a descriptor of
prey encounters in a very limited setting.

Comment 7: The probability distribution of the number ofprey encounters in the IPR
In this comment, following some consideiations on the conditional distiibu
tions of the number of prey encountered, the Laplace transforms of the proba
bility distributions of the (unconditional) counts, N, are presented and by de
composing etc., the probabilities of none and of one count are obtained for an
alytical comparison with the mixed Poisson distribution.

If the predator during the entire period of time (0,t) is known to have been
foraging in a patch then it has encountered prey in a Poisson process at rate
A and the total number of counts has been Poisson distributed with mean At,
i.e.

P { N = n non-interrupted patch residence during (0, t)

(At)”
= e_Åt , n = 0,1,2,

However, being in state i (patch), the next event occurs with intensity w1÷A
(cf Figure 6) and the probability that this event is a transition to state 0 (OFF
= interpatch) is wiI(w1+A) or alternatively, a prey encounter occurs with prob
ability A/(wi-i-A) Thus in an interarrival time, the number of times the forager
moves from one patch to another patch (i e visits state 0) is geometrically dis
tributed with mean w1IA, i e

P{i periods of interpatch travel between two consecutive prey encounters)
I cü \‘ A

=1 ) ,

A+w1i A--&
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The average interpatch residence time is 11w2 so between two consecutive
encounters the forager on average spends w1IÀ 11w2 units of time searching
for patches. By a similar argument, it follows that the number of prey encoun—
tered during one patch residence time is geometrical distributed with mean À1w1

and variance A(A +w1)1w12,i.e.

P{i prey items encountered during one patch residence}

( À

)‘
w1

i = 0,1,2,
À+w1 A+w1

Thus, in a Poisson process the number of counts in a fixed period of time is
Poisson-distributed but the number of counts in an exponentially distributed
period of time is geometrically distributed (= special case of negative binomial).

Returning to the probability distribution of the unconditional number of
counts, N, define P(n, t) as the 2 X 2 matrix of elements,

Pq (n, t) = P(N = n and the forager occupies state j at time t the forager start
ed(attime0)instatei) ; (i=0,1; j=0,1)

The matrices P(n,t) satisfy the Chapman-Kolmogorov equations (see e.g.
Cox & Miller 1965 for an introduction to the standard procedure) and taking
the Laplace transformed yields

s+w2 w1

P(0s)=
s2+s(À+wi+w2)+Aw2

w2 s+À+w1

— (s+w,)2 (s+w2)wi
À(s + w2)’ i

P(n,s) = ii I
(s2+ s(A + w1 + w7) +

(s+w,)w2 w1w2

where theH2-parameters (‘yl,y2) are the roots in the 2nd degree polynomium
in the denominator and P denotes the Laplace-transformed, i.e.

P(n,s) = fetP(n,t)dt

For zero counts, n =0, we obtain after decomposing and baclc—transforming
into the time domain,

P(0,t) = e_Ylt + e_2t
Y2Y1 Y1Y2

w2 À+w1—y1 w2 À+w1—y2

from which the probabilities of no counts,p0(0,t) andp1(0,t), in Eqs 12 and
13 are obtained by adding the columns, i.e.

p0(0,t) =P00(0,t) +P01(0,t), and
p1(0,t) =P10(0,t) +P11(0,t)
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In the time-stationary process the probability of no counts, p(O,t) =
ir0po(O,t) + iripi(O,t), in Eq. 14 follows directly from the requirement to a
time- stationary (= equilibrium) renewal process, i.e. the p.d.f. of the first for-
ward recurrence time is [1 —F(t)] Ip (e.g. Cox 1962, Cox & Miller 1965) where
i —F(t) is the probability that an interencounter time exceeds t, which equals
the probability,p1(O,t), of no counts in the event-stationary process; and p =
plys + (i —p)/-y2 is the mean interencounter time. This produces a posterior p
in theH2-expression for no counts in the time-stationary process, which be
comes Prand = pI[p + (1 —P)y1/y2] (see also Comment 2).

The situation ‘Yi = Y2 = y leads to PP-encounters at rate A implyingp1(O,t) =
p(O,t) = exp(—’yt) due to the Markov property of the exponential distribution.
Howevei the situation is different when the forager starts in state 0,
p0(0,t) = (1 + ‘yt) e_Yt ; yI = y =y,

which is the tail probability of a homogeneous Erlang-2 distribution (E2) ob
tained from the generalized Erlang-2 as ‘y1 and Y2 tend to be equal.

In principle, following the same procedure as for n = 0, decomposing P(n, s)
and back transforming into the time domain, yields the probabilities for N
= 1,2,3..., which, however, rapidly become mathematically complicated. The
result for N =1 count becomes, in the case of an event-stationary IPP,

p1(1,t) = P{N=i the predator is foraging ina patch at t=0}

= A [e_Yit — e_Y2t] + Ct e1t + Dt e_r2t

where

A
= À

[(yi — w,) + (y2—
&)2)2 (y

— Y2)2 + wi((w2—y1)+ (o2—y2))j
(Y1-Y2)

A
2

2
[(‘y1—w2) +w1(w2—y1)]

(y1-Y2)

À
2• [(y2—wz) +w1(w2—’y2)]

(y1-Y2)

It is the first term associated with A, which makes the probability of N = i
different from the equivalent probability in a mixed Poisson distribution, which

• consists of the two terms of type t e’t:

P{N = n j N is mixed Poisson-distributed (u,y1t,y2t)}
(y1t)7

—

(y2t)
—=u e’ +(1—u). e

n!

In this mixed Poisson distribution the variance to mean ratio, IDCn.ijxpojsson(t),
bears a linear relationship to time,

ID Cmix Poisson ( t) = i +
uyi+(1—u)y2
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Requiring that the mean count, [uy1 + (1 —u)y2] t, coincides with the mean
count in the IPP, which as noted in Comment 6 equals t/E(X) where E(X) =

PIYi + (i —P)/y2, yields u = p/y1/E(X) and IDC takes the form,

p
wl yI

IDCmjxpoisson(t) = i + At ; U = ( Prand)
Wi+W2 1—p

—+---—

Yi Y2

Thus, using the mixed Poisson distribution for counts, which produces the
same mean count as in the IPP, implies that the weighting factor becomes equai
to the p weight ratio of the exponentiai phase means in the IPP (e g u = 2/11 in
the example) and, the IDC equals the contribution of 1 from a Poisson distri
bution plus a term, which equals the mean count had the foiagei stayed in a
patch duiing ali t time units weighted by gro, the fraction of the time spent on
average in the non-patch state. The mixed Poisson distribution in other words
generates much more variability in the number of prey encounters than the IPR
In the IPP-example (see Figure 13), IDC is 4 but IDCmjxpojsson(t) = i +2t and
thus has already increased to 11 after 5 units of time. The distributions ciearly
show considerabie differences. At t = 5 the unimodal count distribution in IPP
(Figure 13, top right) peaks at 4 counts or ciose to the mean count of 5. In the
bimodal mixed Poisson distribution the major peak occurs aiready at 1 count
(26% chance; caused by y2t = 5/3) but a second, local peak at 20 counts (chance
1.6%; caused by ‘yit= 20) creates a long taii. Thus the chance of obtaining ex
treme counts (i.e. very low or very high compared to the IPP-mean) is much
greater in the mixed P case than in the IPP The coefficient of variation,

c v (N1) = IDC(t)/mean,

which in the IPP diminishes towards zero with increasing time (e g c v decreases
fiom ca 0 7 to 0 4 when t increases from 5 to 20, Figure 13), becomes (asymp
totically) constant, c v = \/w1/w2= in case of the mixed Poisson distri
bution (e g in the example, c v decreases from 1 5 to 1 4 when t increases from
5 to 20) The IDCs (and, hence, the c v s) are equal when t = 2/(w1 + w2) (eg
1.5 in the present example).

Conceptual exampie
Principal effects of encountering patchy prey are here considered in a conceptual ex
ample with emphasis on simplicity and generality. Focus is placed ori functional het
erogeneity as measured by IDC when the average rate of encountering food organ
isrns is kept constant. The aim is to show that the actual rates of encounters
experienced by the individual predators may deviate considerably from the average
due exclusively to the aggregation of food particies into patches. As a special aspect
of variability, the effect of the position of the predator (i.e. the state occupied = start
condition) on the time to encounter the first food organism is also considered. The
purpose of the entire section is at the same time to exemplify the concepts of the IPP
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model unit and thereby to elucidate the biological interpretation of the three IPP
parameters.

The scenario comprises a cruising predator foraging in a large volume of water
containing (a specified number of) one type of food organisms. The idea is to com
pare the variability in encounter rates for the artificial situation in which the food
organisms are randomly distributed in the water with situations i which these food
organisms instead are more or less aggregated and occur in few big patches or in
many small patches. The conceptual link to patch geometry and densities is created
by introducing two dimensionless parameters without considering absolute mea
sures of, e.g. patch dimensions (but see Co;nments 8 and 9).

Starting with a non-patch situation (i.e. with the food organisms randomly dis
tributed in space) the predator is supposed to encounter food particles in a Poisson
process at a cofistant rate, À0, which is directly proportional to the concentration
(density) of food particles. Thus Å0 is considered a measure of the food density and
it constitutes the first of the environmentally related IPP-parameters we are about
to introduce. Such a non-patch scenario is depicted in Figure 14A(left). The number
of counts during a specific period of time, t, becomes Poisson-distributed with mean
= variance = Å0t, and, hence, IDC = i for ali t. As a simplifying assumption we as
sume that the mean time between consecutive ericounters, p, is directly proportion
al to the prey density also in the case where the food particles are clustered in patch
es. This yields the relatioflship u = hA0. The assumption also provides us with a
framework for a comparison of the randomly distributed case with the case of
patchy distributed prey. The first step in creating a patch situation from the non
patch situation consists of concefltrating the food particies in a smaller volume of
water as illustrated in Figure 14A from left to right. Let i denote this patch volume
fraction, i.e. on average one volume-unit of water consists of i — ij units of water

without food and units of water, which contains food organisrn at a f1 times
higher density than ifl the non-patch situation. Thus = i denotes the non-patch
situatiofi and the smaller i the denser the intrapatch coficentration of food organ
isms (i <i). Similarly, everything equal, the predator foraging inside a patch will en
counter food particles at a rate, which is higher than in the non-patch situation:

or ?)=Ao/A. (15)

The criterion of maintaining the average interencounter time, = 1/(A1) (or
maintaining the average number of encounters, E (Nr) = Ar1 t, during a specific
period of time, t) is equivalent to assume that the fraction of the sea, i, which is oc
cupied by patches, equals the proportion of time spent by the predator ifl patches,
w1, i.e.

= ï1 —1 if = ir1. (16)

Furthermore assuming non-overlapping patches, the density of patches (= the
mean number of patch centres in a volume of water) must be inversely proportional
to the average patch volume because their product equals j, which is considered
constant. Figure 14B illustrates this variation in patch geometry pertaining to a spe
cific patch volume fraction () and, hence, to a specific intrapatch prey density (oc A0).
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A

B

Figure 14. A conceptualization of patchiness simplified to two dimensions. A square represents a volume
unit of water in which a prey particle is shown by a dot. The redistribution of prey particies (initially
randomly distributed, A, left) in forming aggregations with almost identical patches is considered to take
place in two steps. Through conservation of prey mass, the first step (A) links total patch volume to in

trapatch prey concentration. The second step likewise links patch concentration to the individual patch
volume. Thus, in the top squares (A), the number of prey particles is constant (i.e. constant ko; sec text)
and, moving to the right, these particies are concentrated in a smaller and smaller patch volume fractiori
of the sea, j. The bottom squares represents a situation for a fixed s (and A0) and, moving to the right,
this total patch volume comprises fewer but bigger patches (i.e. decreasing °; sec text).

Everything equal, the rate at which the predator encounters patches, w2, is likely
to decrease as the situation changes from one of many smaller patches (Figure 14B,
left) to one of fewer but bigger patches (Figure 14B: right). Let denote the patch
encounter rate relative to À0:

=wIÀo (17)

Thus measures the intensity of encountering patches per unit of one average
prey interencounter time in the non-patchy case. Alternatively, denotes the av
erage number of food organisms the predator encounters in the non-patchy case
during an average patch search time.

Comment 8: Specification of the IPP model unit
based on simple encounter theory and patch geometry

This comment is devoted to an example of deriving the IPP pas ameters rn rela
tion to the patch scenarios with a cruising predator in Figure 14. Simple en
countel theon with spherical patch geometn is used to express the relation
ships that encounter rates bear to search volume rates and to prey and patch
concentrations. For this purpose it is necessary to introduce several new sym
bols, e.g. for predator speed, prey concentrations and patch dimensions.
Emphasis is also put on dimensions using, e.g. cm3 for volume and s for time.
Larval herring is used as an example Secondly, returnmg to the environmental
parameter representation of the IPP, (A0, = , ), the relationships for ob
taining the equivalentH2-parameter set (p, y, y2) of the IPP are given together
with approximations for extreme cases.

al
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The prey encounter rate in the non-patch case, A0 [encounters s’j, is ob
tained as the search volume rate, f3prCy [cm3.s’j, multiplied by the prey density,
po [ind.. cm31:

= /3prey POprcy.

Den oting by Dpred [cml the perceptive distance of the forager while searching
for immobile prey particies with speed v1 pred [cm . s ] the search volume rate
becomes approximately (assuming negligible effects of crossing pathways),

/3prev = IT(Dpred + rprev)2 Vipred lTDpred2 Vipred

where rprey [cm] is the equivalent spherical radius of the prey particles (= prey
size), which usually is small compared to the visual range of the predatoi Dpred.
In a patch scenario the predator, when it is foraging inside a patch, will likewise
encounter (per unit time) the prey organisms contained in this /3-volume (as
suming that its swimming speed and perceptive distance remain almost con
stant; continuous search, e.g. that refractory periods can be neglected etc.).
Thus the rate at which the predator encounters prey particies in a patch be
comes approximately

Å = Pprey Pprey Pprey = 7)_i Poprey.

The fraction of the sea, 7) [dimensionless], which is occupied by patches, must
equal the concentration ofpatches, Cpatch [number of patch centres . cm3],mul
tiplied by the average patch volume, 4atcI, [cm3]:

7) = ‘atch

Considering a patch as a collection of (randomly distributed) prey particles
enciosed by a sphere with radius Rpatch [cm] gives:

atch = 4/3 1TRpatci

and, then

Cpatch = 3/4 . ‘rr_i
.

7) Rpatci3.

Per unit time the predator will encounter the patches in the volume, /3patch
[cm3.s1], given by:

/3patch = lTVû pred Rpatch2

where v0 pred denotes the swimming speed of the predator when searching for
food patches. In this equation it is assumed that a patch encounter requires
physical contact between predator and patch sphere perimeter. If the predator
is able to perceive the sphere perimeter at distance D, the patch radius, Rpatch,
must be replaced with D + Rpatch in the /3-kernel above. Howevei in most cases
such a ‘patch perceptive distance’ is probably small compared to the patch di
mensions and the /3-kernel will flot change. The rate at which the predator en
counters patches, w2, equals this /3-kernel multiplied by the density of patches:

=/3patcl Cpatch = 3/4 V0pred 77/Rpatch.
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It is of note that w2 is proportional to 7)/Rpatch where = po prey/Pprcy may be
estimated as the ratio of the average prey density in the sea (sampling over patch
and interpatch areas) to the average intrapatch density of prey particles.
Basically ij measures the fraction of the sea occupied by patches and the rela
tionship states (with constant ij) that, prey organisms, for example, can halve
their risk of group encounter with predators by aggregating eight times as many
in (eight times) fewer and bigger patches (Le. by doubling Rpatcii).

Assuming that patch centres are randomly distributed in space, patch overlap
is not likely to occur when the patch volume fraction (7)) is very small because
for any patch, the probability of an interpatch centre distance less than2Rpatch

is l—exp(—8Cpatchatcii) 87). This expression is based on the cumulative dis
tribution function (c.d.f.) of the nearest neighbour distance, dNND, which is
1— exp(—4/3 p) for randomly distributed particles at density p (e.g.
Pielou 1969).

The dimensionless measure of the rate of encountering patches per average
prey interencounter time 1 /A0 (in the non-patchy case of Figure 14A (left)) becomes

= w!Ào = V0 pred

______

4 A0 Rpatch

where ij/Ào may be replaced by hA. If ‘ij is halved then w2, the rate of patch
encounters is also halved (because of half as many patches) but À, the rate of
prey encounter doubles (because the intrapatch prey density, Pprey doubles) so
is also halved. Suppose Rpatch at the same time is halved then (Ü2 and remain
constant. However, the idea in Figure 14B is to consider patch situations for
fixed ‘ij, and then decreases (like w2) in inverse proportion to increasing patch
dimension, Rpatc (with decreasing number of patches).

In the present case of maintaining a constant average rate of encountering
prey, the rate of leaving patches, wi, decreases in proportion to the rate of en
countering patches (see Eq. 16), which implies that the speed of the predator is
the same (whether it is searching for food patches or on intrapatch search for
individual prey organisms):

(VI = (17)) 2/71 = 3/4(1—7)) Vpred/Rpatch

where Vpred = Vj pred V0 pred. For a small patch volume fraction, ‘ii, the factor
(1— ‘ii) vanishes and 17w1 4/3 . Rpatcl,/Vpred, i.e. the average patch residence
time equals the time required to move the distance 4/3 . Rpatch. This result and
the distribution of patch residence times are derived and discussed further in
Comment 10 (assuming the predators are moving through patches in straight
paths). The assumption of no behavioural changes during patch residences (e.g.
constant speed = Vipred = Vopred) (which is the essence of the requirement = ir1)
is discussed in Corninent 11 and the effect of reducing the speed during patch
residences is considered.

As an example consider 1.2 cm herring larvae (ca. 2 weeks old) swimming at
Vpred = i crn with a perceptive distance of Dpred = 1.5 cm searching for cope
pod nauplii with rprey 0.01 cm (e.g. Rosenthal & Hempel 1970, Munk &
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Kiørboe 1985). The encounter rate kernel becornesI3prev 7 cm3s. According
to Munk & Kiørboe (1985) this kernel (of Ca. 25 l h-1) appears to be 2-3 times
too high (e.g. because, according to Rosenthal & Hempel (1970), the perceptive
field should only comprise the haif-circular field of vision above the head).
However, it is only the right order of magnitude, which marters in the present
context. Considering the average prey density in the sea to be p prey = 10
ind. cm3 (rr 0.1 ind. 1l) gives a Poisson prey encounter rate of À0 = 7 >< i0
ind. s , i.e. with an average interencounter time (l/À0)of 24 min. The average
nearest neighbour distance of these randomly distributed (non-patchy) nauplii
S O.SS(p prev) 1/3 or ca. 12 cm. Assuming these nauplii aggregates in patches at
an intrapatch density of Pprey =102 ind. cm3 (= 10 ind. . 1) implies a patch
volume fraction of = 1/100 and the IPP prey encounter rate increases likewise
by a factor of 100, i.e. À = 7.10-2 ind. s1 and the average interencounter time
(1IÀ) becomes 14 s as long as the predator remains inside a patch. Hence the
average NND of the nauplii inside a patch decreases by a factor of 100”= 1/5
and becornes 2.5 cm. A patch radius of Rpatci-, = 10 cm or a spherical patch vol
ume of atch = 4200 cm3 (= 4.2 I) gives a concentration of patches of Cpatch
= 2.4.10-6 patches cm (= 2.4 patches . m) with an average patch NND of
41 cm. The rate of encountering patches becomes w2 = 3/4 1 . 0.01 . 1/10 =
0.75 . 10 . s or 2.7 h1. However, the rate of leaving patches, which is neces
sary to produce the (non-patch) average interencounter time of 24 min, is w1 =
100 w2 = 0.075 .5-1 giving an average patch residence time of only 13 s. A her-
ring larva encounters on average 4: = 1 patches during a 24-min period. The
index of dispersion for counts (IDC) for this IPP is ca. 3 (see e.g. Eq. 21).
Maintaining a patch volume fraction of i = 0.01 but increasing the patch radius
by a factor of 10 (to i m) causes the patch volume to increase 1000-fold and,
hence, the patch concentration to decrease by a factor of 1000 and consequently,
the average patch NND to increase by a factor of 10 (to 4 m). The rates of en
countering and leaving patches as well as 4: decrease by a factor of 10 and IDC
becomes 21, which implies a 7-fold increase in the variance of counts (because
the mean is constant corresponding to the average interencounter time of 24 min).

If the parameters À0, = ‘wi and 4: are known then the IPP- or theH2-para-
meters can be obtained as follows:

IPP:

Å =

4:= (1
— ) .

— À0

= 4:. À0

H,:

1-4:+V(1÷4:)2-44:i

2 V(1+2—44:
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= • [(1+) +(1+)2_4]
2 ii

Y2=
2 77

which for small ‘r may be linearized as follows:

i / 77(1—)\ i

1+ (i+ ) 1+
;

A0 A0 Å0
Yl =(1+)— —(1+) ; 77i«1

77 i+ 77

/ i \

__

(1+)
À0

Thus as the patch volume fraction decreases (and hence the intrapatch prey
concentration increases) p and -y2 remain more or less constant but yi increases
in inverse proportion to 77. The last example with Rpatct, = 100 cm is character
ized by 77 = 0.01 and = 0.1 and the approximation above give directly that
p=0.9, yi=110Ào andy2=Ào/11.

The parameter set (Ao,77 = ira, ) determines an IPP and represents one way of link
ing predator behaviour to prey density, patch density and average patch volume. In
this IPP assuming time-stationarity the mean counts during t is À0t independent of
the values of the patch volurne fraction, 77, and of the patch volume measure, , but
the variability in counts will depend on these values. As an example suppose the
predator on average encounters A0 1 prey per unit of time in case of randomly dis
tributed prey. If these prey organisms are aggregated in patches, which takes up, say,
one third of the water volume, 77 = 1/3, the (intrapatch) rate of prey encounters be
comes À= 3 (Eq. 15). Assuming the predator spends one third of the time in patches
(ij = rr1) implies that it leaves patches at twice the rate it encounters patches, (01 =
2w2. This yields the example used throughout the text when w2 = 4/9, i.e. (À, w,
W2) = (3, 8/9, 4/9) or in theH2-representation, (P,yl,y2) = (8/11, 4, 1/3) (see
Comrnent 4), which now is represented by A0 = i, 77 = = 1/3 and = 4/9. Figure
5 shows the distribution of interencounter times in this setting. The mean interen
counter time is 1 (= i/À0 = 1/(Àr1)). The probability distribution of the numbers of
encounters during 5, 10, 15 and 20 units of time are furthermore shown in Figure
13 both for the time-stationary and the event-stationary cases. For small t the dis
tributions differ greatly with respect to the probability of no counts. The mean and
the variance in both cases are given in Comment 6. As an illustration Figure 3 shows
a realization of individual encounters during a small time segment, and, Figure 15
(top) shows the variation in the (cumulated) number of counts during 100 time units
in the Poisson process (left) and the IPP (right). Zooming in, Figure 15 also illus
trates the variation in counts during 10 time units (mid graphs) and duririg i time
unit (bottom graphs). The variation in number of encounters up to time t, which
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PP IPP

Figure 15. Comparing the variability in number of encounters in realizations of the non-patchy Poisson
ptocess (left) with realizations of the patchy IPP or H2 process (tight). The realizations are obtained by
simulatlon. In both cases the mean number of counts is one per unit of time, e.g. in each of the top graphs,
100 encounters is the mean count of each bar in the realizations shown. In the Poisson (A0=1) case the
number of encounters is Poisson distributed with variance = mean, i.e. with index of dispersion for
counts, IDC = 1. In the IPP(A= 3, ry1 = 8/9, ry2= 4/9) or H2(p = 8/11, yi = 4, y2= 1/3) case the variance to
mean ratio is Ca. IDC.. = 4 (see Figure 12), which gives rise to bigher variability. The graphs below are
zooming in, magnifying 10% segments of the graphs above, and showing the variation in the number of
counts per 10 time units (mid) and per i time unit (bottom). The IPP realization is based on sirnulation
of theH2-process.
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always is higher in the IPP than in the PP, increases with increasing IDC(t), the index
of dispersion for counts at time t. IDC(t) is defined as the variance to mean ratio
for the counting process, V(N)IE (Ni), (E (Nr) = t in this example for the time-sta
tionary case) (see Eqs 8-10), and for large t this ratio approaches a lirnit, IDC, (as
shown in Figure 12 for the present case), which is the same for the time- and event
stationary processes and equals the coefficient of variation squared of the inter
encounter times (see Eqs 5-7), i.e. after a translation into (Ào,7),)-notation,

IDC=1+2 ; =i ; t» . (18)

The speed at which this approach takes place is determined by a critical time unit,
which expresses a balance between i and :

i 77 i
tcrit = = —

(19)

or, in the example, = (1/3)1(4/9) = 3/4. Hence IDC= 4 represents the index of
dispersion for IPP-counts in Figure 15 (top) and also in Figure 15 (mid) because
t = 10 is still considerably bigger than tcrjt. In Figure 15 (top) the expected number
of counts during 100 time units is 100 in both cases but in the IPP case IDC is four
times greater than in the equivalent Poisson process, i.e. in the IPP the standard
deviation of counts, Stdv(Nioo) = [IDC]112 [MEAN]112 = 20, is twice the standard
deviation for the Poisson case (= [MEANI”2= 10). The coefficient of variation for
counts likewise is halved from c.v. (N100) = [IDC/MEAN]112 = 0.2 in the IPP (see
end of Comment 7) to 0.1 in the Poisson case. Thus, when IDC IDC=22,c.v.
for counts in the IPP is twice the c.v. for the Poisson but the absolute value of the
c.v. for counts decreases towards zero for iflcreasing t.

For smaller t, IDC must be caiculated from the exact expression in Eq. 10, i.e.
translated into (Å0,77,)-notation,

IDC(t) = i + 2 [i
—

(i — e0t)]
; = (20)

=IDC-2 ;

As the patch volume fraction of the sea decreases (i.e. 7) is small and A becomes
big), IDC approaches a maximum, which according to Eq. 18 becomes,

IDCmixci+2/ ; =ri«1. (21)

Consider for example the same case as before but with i = 1/10, i.e. the IPP with
parameters A = 10, w2 = = 4/9 and w = 9w2 = 4 or the equivalent H2(p = 0.7011,

= 14.13, Y2 = 0.3 145) process. Thus, decreasing the patch volume fraction ca.
three times so = 1/10, IDC, increases from 4 to i + 4.5 . 0.9 = 5.05, which is ciose
to the maximum dispersion index of 5.5 (with = 4/9). Increasing patchiness further
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by considering fewer but bigger patches, suppose aiso takes a value of 1/10, IDC
becomes 19, i.e. a variance of counts, which is ca. 5 times higher than for the IPP
case shown in Figure 15. The IPP-parameters for this case (i= = 1/10) are IPP(k
= 10, w2 = 0.1, w1 = 0.9) or H2(p = 0.9161, y = 10.91, Y2 = 0.0917). Compared to
the IPP-situation in Figure 15 (top), the standard deviation of counts more than
doubies and becomes 44 (because IDCY2 = 191/2 = 4.4). The approximately 95%
confidence interval for the number of prey particies a predator will encounter dur-
ing 100 units of time thus expands from (80,120) in the Poisson case (A0= 1) to
(60, 140) in the IPP case shown in Figure 15 (i = 1/3, = 4/9) with a further ex
pansion to (12,188) in the present IPP case of ij = = 1/10. Thus, in ali these cases
a predatoi on average, encounters one prey per unit of time but due to patchiness,
individual predators are likely to experience encounters with prey which deviate
considerably from this average.

The variability in counts has important implications for very short periods of
time and the rest of this example is devoted to considering the consequences of the
start conditions (i.e. which state the predator occupies at time 0) on the time, T,
required to encounter the very first food organism. We specificaliy consider the
probabiiity that the first encounter time exceeds a certain critical period of time
denoted by ‘r, i.e. P{T> r} = P(N = 0). These probabihties of zero counts at time r
are given by Eqs 12 and 13, i.e.,

p1(r) = p e-’T + (1 —p) . e (22)

Y2 -

______

po(T) = e + . e (2)
Y2-Yl Y1Y2

where Pi denotes the probability that the first encounter time exceeds t = T if the
predator at t=0 is foraging in a patch, and the larger probability, Po, likewise refers
to the situation when the predator at t = 0 is iocated in the interpatch area. If the
predator instead was foraging in a patch at t = 0 with probabihty 7 = ri (and trave!
ung interpatch at t = 0 with probability i — = gro) then its chance of flot encounter
ing a food organism during the first r units of time becomes ir1 Pi + ToPo and,
hence, intermediate to Pi and Po as expressed by Eq. 14 for the time-stationary case.

As an exampie consider again the situation in which the predator on average en
counters A0 = i food organism in case of randomly distributed food organisms. The
chance of flot encountering a food organism during, say, r = i unit of time is
Pp010 (1) = exp(— 1) = 0.37 irrespectively of the predator’s position at t = 0. Redistri
buting this À0 =1 random food situation into the standard IPP-patch exampie used
above, i.e. (, Yi, Y2) = (8/11, 4, 1/3) or (A, wi, w2) = (3, 8/9, 4/9) or (A0, = r1,
= (3, 1/3, 4/9), causes the probability of flot encountering a food organism during
i time unit to decrease when the predator starts inside a patch; pi(1) = 0.21. How
ever, starting outside the patches this probability increases by a factor of ca. 4 and
becomes po(i) = 0.78 refiecting that the chance of encountering at least one patch
(which on average requires 1/w2 = 2.25 time uflits) and then encountering a food
organism within i time unit only is 12%. If the predator starts in a patch and re
mains there for at least i unit of time (which occurs with probabihty exp (— w) =
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0.41) then its chance of flot encountering a food organism is only exp(—À) = 0.050
(cf. Comment 7). The higher value, p(1) = 0.21, is obtained because the predator
may pass through the patch without encountering any food organism (see also
Comment 7), which also is reflected by the fact that p(1) is determined almost en
tirely by Y2, i.e. Pi(1) (1 —p)exp(—y2)= 0.20. This also explains whypi decreases
slower than for increasing T. Suppose, for example, that r= 5 thenpp00(S)
= exp(—5) = 0.0067 but p(5) = 0.052 and Po(S) = 0.21. The balance of Pi =
occurs with the present parameter values for T = 2.0. During longer period than 2
time units a higher proportion of zero counts is likely to occur in the IPP compared
to the Poisson process (with the same mean) which causes Pi > PPoisson (but also a
higher proportion of many encounters).

Dividing Eq. 23 with Eq. 22, rearranging and using Eq. 4 yields an expression
for how many times Po exceeds Pi, i.e.

A 1 1_e_Y1Y2)T

po(’r)=pi(r) 1+ . (24)
Yi—Y2 1—p

1+ .e_(y1_Y2)T

1—p
The last factor in the bracket with the exponential terms vanishes when r( ‘y1 — Y2)

is considerably greater than one, which gives

F À 11 i
Po(T)P1(r)I1+

. I ; r» . (25)
I Yi—Y 1PJ ‘Y1—Y2

In the standard example above this factor (= bracket) becomes 4. Tt is of note that
the factor in Eq. 25 alternatively may be written yi/(yi — ‘y) . 11(1 —p) because the
approximation is equivalent to neglect they1-terms and, hence calculate Po and Pi
in Eqs 22-23 based entirely on the ‘y2-terms. Transforming into (À0, 7) = 1T1, )-
notation (see Conrnent 8) and linearizing for small patch volume fractions, 7), yields
Eq. 25 on the form

F 1/ 7)\1 F ii 1 i
po(T) =p1(r) =Pi(T) [l+—-j; ij=ir1«1, T»-,—-1-— . (26)

The last expression, pcIp = i + iI, shows resemblance to the maximum index of
dispersion for counts in Eq. 21, IDCmax = 1+ 2/. As an example consider again the
patchy case of 7) = = 1/10 (maintaining A0 = 1) with the alternative parameter speci
ficationlPP(A = i0,w7= 0.1, o = 0.9)orl-12(p= 0.9161, y1 = 10.91, ‘y = 0.0917).
It follows from Eq. 26 that Po is ca. 12 times greater than Pi. The probabilities be
come Po(T) yi/yi — Y2) exp(—y2T) andpi(T) (i —p) . exp(— y2’r) or Po =0.92 and
Po = 0.077 when T = i. As above these probabilities are to be compared with

= 0.37. The time period required for Pp00 = Po has now increased to T =

—(ln(i—p))I(1—y2)= 2.7. Increasing Tto 5 time units these probabilities of not en
countering food decrease to pp0011 = 0.0067, Pi = 0.053 and Po = 0.64. Thus, in all
these examples, the predatoi on average, encounters one food organism per unit of
time but due to patchiness, the probability that the predator does flot encounter
food during T units of time depends flot only on T and on the average food density
but very much on the position of the predator at time 0.
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Comment 9: The probability characteristics of the time to first feeding
The time required to encounter and ingest the very first food organism, T, is of
particular importance for survival in early life. Blaxter & Hempel (1963)
worked with first-feeding herring larvae and introduced a concept of ‘point
of-no-return’ (PNR), referring to the point in time starving larvae are too
weak to feed. Suppose time 0 defines the point in time at which a herring larva
is ready to start exogenous feeding. At this point in time the larva still have
some yolk-sac left (e.g. Blaxter & Hempel op.cit., Kiørboe et. al. 1985). If T

denotes PNR then pj(T) and po(T) give the probabilities of reaching PNR and,
hence, of death due to starvation depending on the position of the larva at
time 0. Thus, the IPP theory offers the possibility of analysing the effects of
patchiness on first feeding.

This comment starts with considering the probability distributions of the
time to first feeding from which the standard statistics (i.e. mean, variance and
c.v.) are obtained. The standard example is considered again and then first-feed
ing scenarios of larval herring are introduced in continuation of the example
given in Comment 8.

The notation for the time to first feeding is Tp00 in case of randomly dis
tributed food orgaflisms and, in case of patchiness, T1, T0 or Trand when the
predator at time 0 is located inside a patch, outside the patches or, respectively,
inside a patch with probability ‘ni. This time to first feeding is equai to or
greater than the time to the first prey encounter because flot ali encounters lead
to successful attacks. However, suppose the attack success, e, gives the prob
ability that an encounter results in prey ingestion then the point process of in
gestions is simply obtaifled by multiplying the intensity of encounters, A, with
e. For example, considering a cruisiflg predator (Comment 8),

= E l3prey Po prey (non-patchy or Poisson)
A = /3prey Pprey (patchiness)

where Pprey is the encounter rate kernel and p is the density of food organisms.
In the rest of this comment such a E-dilution of the encountering process is
assumed to have taken place so an encounter actually implies prey ingestion.

In case of non-patchy food, i.e. the predator is considered to encounter food
organisms in a Poisson process, the time to first feeding is exponentially dis
tributed with intensity A0, i.e. with p.d.f. given by Eq. 1 so E(Tp0json) 1/À0,
V(Tpojsson) = [hA0]2and c.v.(Tp00)= 1. In case of patchiness and if the predator
already is inside a food patch at time 0 then the time to first feeding, T1, follows
the same hyperexponentially distribution, H2(p, Yi, Y2), as the interencounter
time with mean and variance given by Eqs 5 and 6, and with a [c.v.(T1)]2=
IDC, which is greater than 1; see Eq. 7. However, if the predator is on inter
patch travei at time 0 then the c.d.f. of the time to first feeding, T0, equais
1— po(t) and, is the (generalized Erlang) distribution of the sum of two stochas
tic independent variables, which are exponentially distributed with intensities
Yi and Y2, respectively (see Eq. 13 and the discussion hereafter). Adding the
means and adding the variances of these exponentiai variables yield,
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This coefficient of variation squared is smaller than one and attains a mini
mum of 1/2 for Yi = Y2 (see also Comment 7). Thus, not surprisingly, the aver
age T0 exceeds the average T1 by the average time required to locate a patch,
11w2, but the relative variability of T0 is always smaller (and can be much smal-
ler) than the relative variability of T1. Tt is of note that the distribution of T0 is
independent of p with a density function, f0(t), which is unimodal, starting in
zero with the maximum at tiode = [ln(y11y2)]/(y1—’y2)and tailing off being
skewed to the right.

Consider the standard exampleH2(p=8/11, y=4, y2=i/3) or IPP(A=3,
w1 = 8/9, w2 = 4/9) in which case the average time to first feeding becomes
E(T1)= i and c.v.(T1)= 2 with an intrapatch starting point. However, the aver
age time to first feeding becomes E (T0) = 3.25 and c.v.(To) = 0.93 with an inter
patch starting point. If p varies then the IPP-parameters and therefore the T1-
characteristics change but theT0-characteristics remain constant. For example,
E (T1) decreases linearly with increasing p from E (T1) = l/Y2 = 3 for p = 0 to
E(T1)=1/y1=0.25 for p = 1 but E(T0)=3.25 for ali values of p. Similarly,
according to Figure i 1A, c.v.(Ti) = i at the extreme (i.e. p= 0 or p= 1) and attains
a maximum of

/ -l /‘ VYi—’Y) ‘Yi
c.v.max(Ti)= i+ ror p=

2 YIY2 Y1Y2

i.e. in the present case, c.v.iax(Ti) = 2.5 and E(T1)= 0.46 for p= 0.92. Thus,
changing the IPP-patch characteristics through p, c.v.(T1) takes values between
I and 2.5 but c.v.(To) = 0.93 for ali vaiues ofp.

Considering the example with herring larvae in Cornment 8 but increasing
the prey densities by a factor of 10 (i.e. Poprev = i nauplii .1_I and Pprey = 100 flau
plii .1-’) and adopting an attack success at the onset of feeding of about 10%
(i.e. E 0.1; see e.g. Rosenthal & Hempel 1970, Blaxter & Staines 1971, and
Kiørboe et.al. 1985). Assuming unchanged encounter rate kernels, this leads to
the same prey encounter rates as in Comment 8, i.e. À= 100 = 7 X 10 5_i.

Thus, E (TpojSso/) = hA0 = 24 min but inside a patch a larva encounters food
organisms, which are = 100 times more dense so 1/A = 14 s. In Comnient 8
the rates of leaving and encountering patches were obtained by considering

= = 0.01 and furthermore spherical patches with radius of 10 cm giving
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100 w2 =7.5 x 10_2. si. Thus, the patch volume measure, , which equals
the average number of patches encountered during hA0 24 min, is one. The
H7-parameters are easily obtained from the approximations given at the end of
Comment 8, i.e. p= 1I(l+)=Y2,Yi =Ao(1+)/7) = 200A0 and Y2= A0I
(1 + ) = 1/,. Thus, yi = 400Y2 and the average time to first feeding becomes
E(To) 2/A0 (= 48 min) when the larvae is at an interpatch location at
time 0 If the piey encounter rate keinel is reduced by, say, a factoi of 10 (to
account foi less speed and smaller visual field at first feeding) then A0 and A,
and to the extend the reduction refers to speed also w1 and cü2 are reduced by
this factor Hence, the patch volume measure, , may increase slightly and E (T0)
will almost increase by a factor of 10 and becomes 8 hours If instead the patch
radius is increased by a factor of 10 (to i m but maintaining a patch volume
fraction of ‘rj = = 0 01, see also the end of Comment 8), then decreases by
a factor of 10 yielding p=0 9, = 110 A0 andy2=A0111 so E(T0) h1/A0
Thus, in the present case, increasing the volume of a patch 1000 fold and there
by decreasing the number of patches per unit volume by a factor of 1000 causes
the average time for first feeding to increase from 48 min to 4.4 hours when the
larva is on interpatch travel at the onset of feeding.

In the example above the average interencounter time is kept constant by
assuming = ‘n This means that the aveiage time requued foi first feeding is
E(T1) = hA0 (or 24 min in the example) when the larva is inside a patch at time
0 The rate of leaving a patch, w1, is high because theie is no behavioural
changes incorporated m the model (on patch encounter) so even though the
average time to first feeding only is 14 s if the larva remains in the patch, the
high chance of leaving the patch causes the increase in E (T1) At the other ex

I treme, suppose that the predator actually is able to remain in a food patch once
encountered This situation is achieved with p = i or w1 = 0, which implies A =
and W2 =Y If Yi »Y2 as in the examples above, then E(T0)»E(T1)and the
probability of dying of starvation before first feeding, po(T) exp(—y2T), cannot
be neglected although the larva will get high rations once the first food organism
successfully is ingested (i.e. before time T).

Discussion
Understanding the mechanisms, which govern the contact rates between predators
and their prey organisms, represents the essential entrance to quantifying trophody
namics. The task constitutes a tremendous challenge and requires exceptional theo
retical development (see discussion by Rothschild 1986 (pp. 247), 1988). We do not
attempt to address this challenge directly in the present paper. Our standpoint is that
a well-defined and simple starting point is required to form a sort of analytical build
ing stone for beginning conceptually to address the effects of a heterogeneous envi
ronment on the encounter rates. The basic question dealt with in this theoretical
study is how to describe from first principles the variability in the number of encoun
ters between a predator and its patchy prey and, using such a consistent theory, to
investigate under which conditions this variability considerably exceeds the variabil
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ity that would be created in a random setting of the prey organisms. The building
stone must therefore be a stochastic one and we are advocating that the interrupted
Poisson process (IPP), which as a double stochastic process represents the simplest
version of a Markov-modulated Poisson process (MMPP; see e.g. Cox & Isham
1980, Fischer & Meier-Hellstern 1992), represents such a starting point. Although
the IPP has been used intensively, e.g. in telecommunications, we believe that this is
the first time it has been applied to biology and the phenomenon of patchiness.

The term ‘patchiness’ is used to designate a prey environment in which the spatial
distribution of the individual prey particles is more aggregated than a completely ran
dom distribution. The important point, however, concerns the scale of patchiness
under investigation. We use patchiness as a concept to designate characteristics of the
heterogeneous prey environment perceived by the predator. Thus the scales of patch
iness, which are of relevance in this study, depend on the perceptive distance and
other properties of the predator considered rather than on the type of sampling de
vices applied in acquiring general knowledge of patchiness in the sea. In this termi
nology a vertical plankton haul or a bottom trawi should for example be considered
a predator sweeping a volume of water basically in one and two dimensions, respec
tively. The idea is that the model unit developed in this study in principle should be
applicable to any type of predatoi and cruising predators such as larval fish are used
only to exemplify part of the theory. The consequences of the patchiness, as encoun
tered by the individual predator, is sometimes referred to as ‘functional heterogene
ity’ (Kolosa & Rollo 1991), which represents the patchy elaboration of the predator’s
encounter and response to a specific density of randomly or homogeneously dis
tributed prey, i.e. to the patchy extension of the functional response (Rolling 1965).
It may be noted that the term ‘randomness’ or ‘randomly distributed’ is taken to imply
completely spatial randomness in the sense that the particles are considered homo
geneously Poisson-distributed in space, i.e. a distribution where the number of points
(e.g. prey organisms or patch centres) in a given set such as a volume of water is
Poisson distributed with a mean proportional to the measure of the set (see Cressie
1991). Apparently this is the only distribution leading to analytical tractability which
is why we, in the extension from a random to a patchy setting, tend to maintain the
assumption of randomness as far as possible (e.g. randomly distributed patch centres
in the geometrical interpretation and applications of the IPP model unit). We use the
Index of Dispersion of Counts (ID C) as a measure of functional heterogeneity in this
study, i.e. the variance to mean ratio of the distribution of the number of encounters
a predator experiences during a specific period of time. This variance to mean ratio
(IDC) is 1 for the Poisson distribution which suggests that a patchy distribution has
a variance to mean ratio which is bigger than 1. However, there is no generally ac
cepted definition of how to measure departure from the Poisson process or complete
ly spatial randomness (see Ripley 1981 (chapter 6) and Cressie 1991 (chapter 8) for
a discussion). Thus for this study it is sufficient to specify patchiness relative to ran
domness using the IDC for the IPP, which is fortunate because otherwise it is diffi
cult to define and quantify what is meant by patchiness in any general sense. This is
also illustrated by the fact that a satisfactory and general index of patchiness has flot
yet been established (Elliot 1977, Downing 1991).
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Our strategy for developing a model unit concerning the effects of patchiness is
therefore flot the usual one of starting by specifying the statistical nature of conta
gious prey distributions whether this is done by the negative binomial distribution
for the global distribution, by the distributions of clusters or in any concrete case
by spectral analysis or some other type of data analysis (e.g. Fasham 1978). Instead
we consider the effects of patchiness directly by a mechanistic parameterization of
the individual predator’s encounter with (patchy) prey. In doing this we do of course
assume a patchy nature of the prey environment (which we, as stated above, do flot
specify initially) and we then attempt to parameterize the heterogeneous nature of
the encounter rate, which is caused by patchiness and the foraging behaviour of the
predator. The simplest model unit for the encounter rate we can imagine resembies
a binary variable, which can only distinguish between two states referred to as a 1
and 0 state. Such an ON and OFF signal captures the principal effect of prey patch
iness. Any predator will experience periods of foraging during which no encounters
take place simply because no appropriate food organisms are passing by (temporal
resource heterogeneity) or present in the parcel of water searched for food (spatial
heterogeneity). This OFF-event is associated with time spent in the interpatch do
main in the IPP model unit. The ON-event represents ali other situations (i.e. van
ous types of food are present to a smaller or larger degree whether or flot the preda
tor succeeds to encounter any of these food items), which are simply associated with
patch residence times in the IPP model unit. Thus the ON-OFF abstraction is first
used to distinguish between patch encounters and ‘interpatch encounters’ and then, -

the ON part is used again for individual prey encounters during patch residence
times. The OFF-part would here represent the dead period after a prey encounter
during which the predator is engaged in pursuing, attacking and otherwise handling
that prey. This is but one example of an elaboration of the IPP model unit, which
is important in many applications and will be treated in a separate paper (but see
Rothschild 1991 for an introduction).

Thus our conceptual starting point for modelling the encounter effect of patchi
ness does flot directly involve any considerations of the sizes and shapes of the in
dividual patches. The ON-OFF patch signal divides the habitat (as perceived by the
predator) into two compartments as shown in Figure 16. The intensities a1 and W7

of leaving and encountering patches can thus be considered as a simple, stochastic
model of a predator migrating forth and back between a food and a non-food en
vironment. Tt is in the food environment, which in this scenario is represented by ali
the food patches in the habitat considered, the forager is considered to encounter
food organisms in a traditional Poisson process with intensity A.

The three TPP-parameters represent a simple and direct characterization of an in
dividual predator foraging in a patchy environment. The parameters may be said to
specify completely the predator’s chance of encountering prey and thus represent a
quantification of the encounter effect of patchiness on the spatial and temporal
scales which are defined by the searching behaviour of the predator. In addition to
Poisson encounters with prey inside a patch the basic assumption in this simple rep
resentation of patchy encounters is exponentially distributed sojourn times of inter
and intrapatch travelling. This leads to a simple three parameter representation.
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0)2

Figure 16. The conceptual starting point for using the IPP asa model unit for the phenomenon ofpatch
iness. The domain of foraging, which is symbolized as a cube, is considered to comprise two types of
water masses; one without food and one which contains food organisms. A predator changes between
these two types of environment with constant intensities, w and w2, and, while occupying the food en
vironment, it encounters food organisms at a constant intensity, Å. In a specific application the next step
involves a redistribution of the food compartment into discrete (non-overlapping) patches in the cube
(not shown but see Figures 1, 14 & 17A). Such a 3d-conceptualization of resource patchiness provides
the basis for expressing the IPP-parameters as functions of the heterogeneous food environment and the
foraging behaviour of the predator.

Thus, in the IPP, specifying values of w2, A and w1, we are flot only saying that if
the predator at time t is located in the non-food environment then 17w2 denotes its
expected time to encounter the food environment, or, alternatively, if the predator
at time t is located in the food environment, its expected time to encounter a food
organism is 1/À provided it stays in the food-environment and 17w1 is the expected
time to leave this environment, but we are also saying that these encounter times
are exponentially distributed, which for example implies that the above mean (for
ward) times remain constant (i.e. no memory effects cf. Comment 2) and that the
variability of the sojourn or encounter times is completely specified (with standard
deviations equal to the means). In general it seems safe to assume that the actual en
counters (as a result of the searching behaviour of a predator during a relatively
small interval of time) in a first approximation can be described by an IPP with con
stant parameters. Tt is in this respect that the TPP may serve as a fundamental unit
for modelling patchy encounters. The key question concerning the validity of such
a constant three-parameter system is the spatial and temporal dynamics which gov
ern changes in these three parameters. This question must be considered in relation
to the specific applications but possible causes for the necessity for such parameter
changes inciude environmental changes in the physical structure of patch and prey
distributions, changes in the relative velocity between predator and food particles
and, behavioural changes in foraging.
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The IPP model unit may alternatively be specified by the three (statistical) para
meters of theH2-distribution of the interencounter times, and Figures 8 & 9 show
the one-to-one relationship between the two sets of parameters. In stochastic termi—
nology this means that an IPP process of encounters is stochastically equivalent to
a H2 renewal process of interencounter times and we may choose either parameter
representation according to convenience in the various applications of the IPP
model unit. However, if the 1-12 renewal process was taken as the starting point for
modelling patchy encounters (Rothschild 1991) then the underlying (biological) in
terpretation of resource patchiness and foraging behaviour would be quite different.
A new and consistent interpretation of theH2-process has been given in this study
in which the parameter p designates a decision variable of the predatoi i.e. on each
prey encounter the predator stays with probability p and encounters the next prey
in that patch according to the first exponential phase of theH2-distribution (see
Figure 7 and Comment 4). Operating with a decision assurnption of the forager, this
interpretation of the IPP model unit, which is based on the equivalent H2-para-
meters, is associated with foraging theory (e.g. Stephens & Krebs 1986) and may
be useful as a new starting point for modeiling certain insect predators such as bum-
ble bees searching for patchy flowers. Howeve in the present study focus is placed
on the more direct patch concept, which is associated with the interpretation of the
IPP parameters. It may be noted that the two intensities of theH2-distribution, y1
and Y2, cannot be interpreted and related directly to local prey densities such as the
IPP parametei A, of encountering prey in a patch (see Comment 1). The description
of a predator foraging ifl two different prey environments requires four parameters,
i.e. an elaboration of the transition diagram of the IPP in Figure 6 with a second A
arrow such that the predator encounters prey with intensity À= Àjitra in state i (in
trapatch) and intensity in state 0 (interpatch). Such MMPP models of patchi
ness will be considered in a separate paper. These models are mathematically com
plicated and difficult to treat on an analytically closed form because they do not
represent renewal processes. Tt is only in the simple TPP which deals with just one
type of prey patches (because Àintcr = 0) that ali encounters occur in the same prey
environment and a (H2-) renewal process of the interencounter times is formed.

In a specific application the biological interpretation and quantification of the
TPP model unit becomes more transparent when its three parameters are modelled
such that they can be derived from specifications of the environmental conditions
and the predator’s foragirig behaviour. The environmental specification inciudes for
example patch (centre) density, patch geometry and (intrapatch) prey density.
Graphically this step implies that Figure 16 can be replaced by a picture of the mod
elled patch structure, which is illustrated by the procedure in Figure 14. The speci
fication of predator behaviour includes for example, as a minimum, swimming
speed and reactive distance. The model of the TPP parameters for a cruising predator
based on simple encounter theory afid spherical patch geometry (Comment 8) con
stitutes one such example. The assumption that patch encounters as well as intra
patch prey encounters occur at random is often used in established foraging and en
counter theories (see e.g. Stephens & Krebs 1986). The third assumption about ex
ponentially distributed patch residence times (i.e. as a consequence of a constant
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intensity of leaving patches) is perhaps more questionable. The probability distri
bution of patch residence times is difficult to derive even in the most simple cases.
As an example Figure i 7A illustrates a scenario comprising spherical patches of var
ious sizes. If a predator moves through such a spherical patch approximately in a
straight path of a specific but random direction with constant speed (see Figure 17B)
then the average (intrapatch) distance travelled exceeds the patch radius by 33%
(see Comments 8 & 10). The distribution of patch residence times can now be de
rived if the probability distribution of the sizes of the patches encountered is known
(Comment 10). Alternatively, considering the inverse problem, the probability dis
tribution of encountered patch sizes, which produces an exponential patch resi
dence time as assumed in the IPP, can be derived. This distribution of the radius in
the patches encountered is, as a new result, shown in Comment 10 to become a 50%
mixture of an exponential distribution and anE2-distribution (= distribution of the
sum of two identical, exponentially distributed, variables which becomes more nar
row with less variance than the exponential). The variability of the exponential res
idence time is in this scenario caused by the variability in the sizes of the patches en
countered described by the mixed distribution mentioned above combined with the
variability in the individual patch transfer times due to the random direction of travel
through patches. However, the probability distribution of the actual sizes of patches
in the sea may differ considerably from the probability distribution of the sizes of
the patches encountered. This principal problem known as length-biased sampling
has been illustrated in Comment 2 where a simple example showed a bias of 500%

Figure 17. A: simple spherical patch scenario with randomly distributed patch centres assuming non
overlapping patches. This is an example of a 3d-conceptualization of patchiness in the redistribution
of the food compartment shown in Figure 16; B: illustrating that a predator is considered to move
through a spherical patch of radius R in a straight path of random direction. The distance travelled
through the patch is denoted by w. Used in comment 10 for a simple derivation of the distribution of
patch residence time.
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in estimating the average time between consecutive encounters simply because a
long interencounter interval is more likely to be sampled than a short interval.
Similarly a cruising predator will encounter patches of a certain radius four times
more frequently than patches of half this radius assuming both sizes of patches were
equally abundant (because the patch searching rate of the predator is approxirnately
proportional to the patch radius squared — cf. Comment 8). Thus even the apparent
simple task of deriving the distribution of patch residence times becomes compli
cated. These questions concerning the validity of the assumptions of the various ex
ponential sojourn times will be dealt with in a separate paper.

Comment 10: The distribution of patch residence times derived from simple
encounter theory and patch geometry

This comment deals only with what happens after the predator has encountered
a patch and not with the chance of actually encountering patches Consider the
scenario where the predator is moving in one direction when it is occupying the
intrapatch state In continuation of Comment 8, the aim is to derive the prob
ability distribution of the intrapatch distance travelled, W, when the predator
is moving with constant speed v1 = Vipred in such straight paths through spherical
patches of radius R = Rpatch We will show that the mean distance travelled,
E(W), becomes 4/3 R, which yields a mean patch sojourn time of 4/3 Riv1 in
accordance with wi = 3/4 v1 uR as obtained in Comment 8 for small patch
volume fractions, ?j = , i e when interpatch travelling occurs with the same
speed as intrapatch foragrng This assumption of v0 = v1 is not considered here
Thus the speed within patches could be different from the speed of the predator
when doing interpatch traveiling hereby incorporating some behavioural aspects
(an example of which is considered in Comment 11). We specifically consider
the effect of random patch sizes and show that the patch sojourn time becomes
exponentially distributed (as assumed in the IPP model unit) when the variabil
ity in the patch radius is described by a specific distribution.

Whenever a predator enters a patch there exists a circle with radius R (on the
sphere) orthogonal on the mo ing direction of the predator, see Figure 17 B The
distance from the point of entering the patch (sphere) to the piane of this circle
is W12 or half the distance of total intiapatch travel This distance can be ex
pressed by the x,y coordinates of the point of predator intersection with the cir
cular section mentioned above In fact only the distance r = (x2 +

y2)Y fiom the
centre of this circular section to the point of intersection is of interest Assuming
that ali points in the circular section are equaliy probable it is easy to det ive the
probability distribution of r and thus of W The probabihty of having a point
of intersection in the annulus {r I r0 r r0 + (r)} is
t((r0+z(r))2—ro2) 2roLr÷(t(i))2

=

Thus the density of; becomes

f(ro)= , OyoR



PREDATOR FORAGING IN PATCHY ENVIRONMENTS 117

and the c.d.f. of r

F(ro)=() ; OyoR

Noting that r2+ (W/2)2 = R2, the distribution of W is obtained in a straight
forward manner:

( /w\2 f4 / Iw\2
P{Ww} J=PjVR2k_)r

f / /w\ Iw\2
= 1—Pr /R2—I—I H I—

I V 2/J \2R

The density becomes

w
f(w)

2R2

from which the mean E (W) = 4/3 R easily is obtained. The question is how the
distribution of W changes when also the patch radius, R, is a random variable.
The notation R = r below is just to indicate a patch of radius r flot to be confused
with the distance r = (x2+ y2) above.

For a sphere of radius R = r the average distance through the sphere will thus
be 4/3 r. Moreover the distance will be a random variable, W, with the distri
bution function F (w R = r) = (w/2r)2and density f(w jR = r) = w/(2r2).The time
spent in the patch by a predator moving with constant speed will be propor
tional to W and thus have the same distribution apart from a scaling factor.
Considering patches of random sizes, R becomes a random variable with den
sity, say, g(r), and then the distribution of W is given by

f(w) = ff(wjr)g(r)dr

f(w)
= f g(r)dr

w12

If reasons exist to assume a specific distribution for w then the particular dis
tribution of R, which yields this distribution, can be derived. This means, solv
ing for g(r) in the above equation, which for w >0 reads after a multiplication
with 2/w,

21f(w) = g(r)dr
w r

w12

or, with the substitution z = w/2,

i 1.1
—f(2z)=J -g(r)dr.
z
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Differentiating with respect to z yields
i 1 i

—--f(2z)÷2—f(2z)= ——-g(z)
z z z

and finally

g(r) = f(2r) - 2rf(2r).

In the IPP model unit the distribution f(w) is exponential. More specifically
W1 Ôi[

f(w) = —e w.
vi

This is because the predator will stay in the patch for an exponentially dis
tributed time interval with mean w1’ and, hence, assuming a constant speed
v1, the distance travelled within the patch is also exponentially distributed with
mean v1• Wf1. Denoting 4) =

f(w) =

which, using the f-to-g transformation above, is produced by encountered patches
with randomly distributed radii of density:

g(r) = 4)e2 + 2r 24)2 e2

1 1
g(r) = —24)e2’ + — 24)(24)r)e_2r

2 2

This last expression is a mixture of an exponential distribution and an Er
lang-2 distribution. It is to some degree intuitively clear that an exponential dis
tribution of the patch sojourn only can be obtained with a distribution of the
patch radius, which show less variability than an exponential distribution. The
intuitive reasoning is that on top of the uncertainty of the patch radius comes
the uncertainty of the entering point and since the combined effect has to be
come exponential each individual effect has to be of less variability than the ex
ponential.

Thus considering spherical patch distributions of this kind the predator stays
in a patch for an exponentially distributed period of time, which is consistent
with the IPP-rnodel.

Nevertheless, a model where the predator moves according to a more com
plicated scheme is clearly more realistically. Upon an encounter it is natural to
assume that the predator will slow down or stop completely with the purpose
of entering some kind of attack sequence. This, however, introduces the notion
of behavioural aspects, we have flot generally addressed in the present study.
For the IPP-model to remain valid it must be assumed that the combined effects
of the distribution of patch size, distribution of patches, and the behaviour of
the predator still results in patch sojourn times and interpatch times, which can
be adequately described by exponential distributions.
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The examples with a cruising predator in a food environment of identical, spherical
patches comprising immobile prey at a constant density (e.g. Comment 8) showed
that the expected time to encounter a patch, 11w2, is proportional to patch radius
and inversely proportional to speed and the patch volume fraction, j. Once encoun
tered the expected time to leave a patch, 11w1, is clearly also proportional to patch
radius. The expected prey interencounter time during patch residence, hA, is in
versely proportional to (intrapatch) prey density, speed and perceptive distance
squared. This is but one example of a simple model of the IPP parameters. If the
foraging environment (patch volume fraction, patch radius, prey density) and pre
dator behaviour (speed, perceptive distance) and hence the IPP parameters for this
simple scenario of a larval predator remain reasonably constant then a situation of
statistical equilibrium will be reached. We distinguish between the time-stationary
IPP, which is being observed from a random point in time and the event-stationary
IPP which is being observed from a point in time at which an encounter has just
taken place (see Comment 6). The exact properties of the counting process are dif
ferent in the two cases as illustrated by the example in Figure 13. This difference is
vital for solving problems concerning rare events or generally the tails of the distri
butions of encounters during a relative short period of time, i.e. an initial period of
time, which is not very much larger than tcrjt = (w1 + w2) 1

One such example is the probability distribution of the time required for first
feeding (see Comment 9). In case of non-patchy food the distribution becomes ex
ponential. In case of patchy food this distribution turns into the overdispersed H2-
distribution when the fish larva happens to be located in a patch at the onset of first
feeding. This case is equivalent to the event-stationary situation. In the time-station
ary case first feeding is also described by aH2-distribution but with quite different
properties (Eq. 14 and Comrnents 2 & 7). Finally, if the larva is located in the in
terpatch domain the distribution of the time to first feeding changes into a general
ized Erlang distribution with the same intensities as in theH2-distributions (Eqs 13
& 23; Comments 7 & 9). The implications of these new results for the dynamics of
first feeding larvae will be treated further in a separate paper. However it may be
noted that the independence of theH2-parameter p in the underdispersed Erlang
distribution implies that the chance of encountering food before the point of no re
turn for most first feeding larvae will be the same under quite different situations
of patchiness in the sea, i.e. the situations described by all the combinations of IPP
parameters shown in Figure 9A as p varies, (which, as shown by Figure hA, in case
of a considerable differerice in the y-intensities is associated with a considerable
range of variation in IDC).

Figure 13 and Cornment 7 also show another important point. The probability
distributions of encounters in the IPP are flot compound Poisson (= mixed
Poisson) or equal to any of the other well-known distributions although they, as
for any renewal process, become asymptotically normal. Thus the parallel be
tween exponentially distributed interencounter times and Poisson distributed en
counters in the non-patchy case is flot maintained in the patchy IPP-case although
the interencounter times here are compound exponential (= mixed exponential
or H7).
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The patchy IPP can produce much higher variability in number of encounters than
the non-patchy Poisson. Figure 15 introduces this point by comparing the variability
when the mean rate of encounters is the sarne in the non-patchy and patchy case.
Since the variance to mean ratio always is 1 for the non-patchy case such a compar
ison implies that the value of IDC obtained in the patchy case directly gives the num
ber of times the variance increases from the non-patchy to the patchy scenario. Thus
the square root of IDC denotes the multiplicative increase in the standard deviation
or coefficient of variation of the distributions of encounters. We use the asymptotic
IDC which overestimates the correct (time-dependent) index byless than 10% if the
time period in question exceeds ca. lOtcrjt = 10I(wi + w2) — see Figure 12. In Figure
15 IDC = 4 so the c.v. of encounters has doubled. The construction of such compa
rable scenarios has been done starting by specifying the non-patchy case and then
following the procedure shown in Figure 14. The example in Comment 8 for small
herring larvae, as modified in Comnient 9 by assuming that only 10% of the en
counters result in ingestion, considers an average prey density of i nauplii per litre
in the sea. A herring larva in this non-patchy scenario will on average ingest a prey
every hA0 = 24 min, i.e. the expected ration during a 12-hour feeding day becomes
12x60/24 or 30 nauplii. The standard deviation for this non-patchy Poisson ration
distribution becomes 5.5 and the c.v. equals 18%. Considering instead these prey
concentrated at a density of 100 nauplii per litre (i.e. = 1/100) in spherical patches
of radius 1 m the larva will on average encounter a patch every 11w2 = 3.7 hours as
suming unchanged speed (i.e. the larva encounters = 0.11 patches during a non
patchy mean interencounter time). Once in a patch the larva will now encounter
nauplii 100 times more frequently than in the non-patchy case. With such a high
rate of prey encounters the larva can only stay on average 11w1 =711w2 or 2.2 min
in a patch in order to achieve the same mean ration of 30 nauplii per day as in the
non-patchy scenario. The IDC for this patchy scenario is i + 2/(Eq. 21) or 20, i.e.
the variance of the ration distribution has increased 20-fold and the c.v. becomes
82%. This will give rise to a considerable variation in the rate of growth. The in
stantaneous growth rate of larval fish is approximately proportional to the daily ra
tion (e.g. Beyer 1989, Example 10) and using a normal approximation for the ration
distribution it follows that ca. 10% of the larvae will succeed to grow at least at
double the average rate during the day considered, i.e. these larvae obtain a ration
of 60 or more nauplii per day. The probability of such growth rates in the non
patchy case is only 2 x 108. At the other extreme the probability that a larva fails
to ingest just one nauplius during a feeding day is virtual zero (i.e. exp(—Aor) =

exp(—30); T= 12 h) in the non-patchy case. Howevei 6.5% of the larvae (exp(—y2r)
= exp(— 30/11); see Comment 9), which at the start of the feeding day are travelling
interpatch, will flot succeed to iflgest any food during that day. Considering that
successful daily growth almost immediately improves the swimming speed and gen
erally the larva’s ability to grow and survive the next day, these resuits indicate the
potential importance of patchiness for fish population dynamics. The implications
of spatial patchiness on larval fish population dynamics and recruitment will be in
vestigated further in a separate paper by using the IPP to govern daily rations in an
individually based, time-discrete model such as the Beyer & Laurence (1979) model.
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The comparative scenarios are based on a constant, average rate of prey encoun
ters, which is achieved by assuming that the foraging behaviour of the predator does
flot change when food is aggregated into micropatches. Thus the speed of the preda
tor is constant in ali the comparative scenarios we have presented and the patch vol
ume fraction (vi) becomes equal to the proportion of time spent in patches (r1).
However, the high speed in intrapatch foraging often results in relative short patch
residence times and unrealistic high rates of prey encounter. For example, in the sce
nario mentioned above, the fish larva ingests on average a prey every 14 s during
intrapatch foraging and each ingestion represents, on average, the outcome of 10
encounters (i.e. E= 0.1). Tt is therefore of note that such comparative scenarios with
a constant mean eficounter rate alternatively can be produced with a simple be
havioural adaptation to patch foraging. The principle in this new amendment to the
mechanistic model of the TPP-parameters is as follows. Suppose the speed of the
predator generally decreases with increasing food density. The speed in the non
patchy scenario with the low food density, say, Vnonpatch, must then be slightly small-
er than the speed during interpatch travel (vo) in the absence of food and the speed
in intrapatch foraging (vi) must be coflsiderably lower. If, for example, Vnonpatch

= 0.9v0 then it can be shown that the requirement to a constant mean encounter
rate implies that v1 = 0.1v0. Thus compared to the scenarios described above, the
fish larva will flow on average spend 9-fold more time foraging in patches than the
patch volume fraction suggests (i.e. r1 = 97)). This higher mean patch residence time
and the ca. 10% larger rate of patch encountering are on average counteracted by
the 10-fold reduction in intrapatch searching rate. The IDC is reduced by Ca. 20%
compared to the equivalent patch scenario above with constant speed. Figure 10

Figure 18. Illustrating the effect on the rate at which the predator encounters prey in
a patch when its perceptive distance decreases with increasing speed. Used in Comment
11 to derive the (optirnum) intrapatch speed which maxirnises the average rate ofprey
encounters assuming the predator moves interpatch with speed u0. Arbitrary scales.

shows that IDC actually increases as wi decreases (towards w2) but since À also
decreases (by ca 90% and w2 increases by 10%) the maximum IDC will decrease
even more and the combined effect is the 20% reduction in the IDC for this patch
scenario with prey-density-dependent behaviour.

Dmax

0

Å max

0 V0 Vimax
Predator speed v1 (intrapatch)
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The perceptive distance is the other characteristic of predator behaviour in the
simple model of the IPP parameters considered in this paper. Figure 18 shows that
the linear relationship which the intrapatch prey encounter rate bears with speed in
the simple model is changed into a Michaelis-Menton type of relationship when the
perceptive distance is considered to decrease with increasing speed. This model is
examined in Coinment 11 and the optimum encounter rate with food organisms is
derived. The result is similar to the considerations above.

The basis model of the IPP parameters can similarly be elaborated with respect
to the characteristics of the foraging environment. One such example, which also
pertains to larval fish as predators, is to incorporate the effect of mobile prey (Ger
ritsen & Strickler 1977) and further the effects of turbulence on the encounter rates
(Rothschild & Osborn 1988, Ewans 1989, Davis et al. 1991, Kiørboe & Saiz 1995).
This would constitute another important example of the interactive effect between
predator behaviour and the environmental impact on the encounter rate.

e = E(N)It = Ar1 = A
wi + w2

Comment 11: Optimum encounter rate with food organisms
— an example of including the effect of predatory behaviour

In Comments 8 and 9, the analysis of the variabihty in counts created by patchi
ness (as described by the IPP with simple encounter theory and spherical patches)
was based on a comparative approach maintaimng a constant average interen
counter time, ii = 1I(Àri) This implies that the a erage rate of encounters with
food organisms, e, was equal to À , i.e.

W2

i

where ir1, the proportion of time spent by the predator in patches was equal to
ij, the fraction of the sea, which is occupied by patches. The essence of this re
quirement is that there is no behavioural changes during patch residences,
which in the present context implies that the predator continues to forage inside
patches with unreduced speed (i.e. v1 = vo) and with unchanged perceptive dis
tance, Dpred (which here is considered equal to the reactive distance).

In this comment the reactive distance for a cruising predator is considered to
decrease with increasing speed and the intrapatch foraging speed, which
maximizes the average encounter rate with food organisms, e(vi0) = emax, 15

derived. An example pertaining to larval herring is inciuded.
The food patchiness is specified by the prey densities POprey and Pprey (or ri =

Poprey’Pprey) and by the average patch radius, Rpatch. Predator behaviour is spec
ified by a (constant) sustained cruising speed on interpatch travel, v0, and by a
constant (but unknown) intrapatch foraging speed, v1, and also by the reactive
distance, Dpred(V1), which is considered a function of v1. This leads to a specifi
cation of the encounter rate kernels (l3patcti and/3prey, see Cominent 8) and then
to the patch and prey encounter rates of the IPP. The rate of leaving patches,
ü, can flot be obtained from the (A0, ij, )-specification as in Comments 8 and

9 because ij is flot equal to 1r1 in the present scenario. In total, resuits from
Comments 8 to 10 are used to specify the IPP-parameters as follows:
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= Ppatci Cpatch = 3/4 V0 il/Rpatch V0 = VO pred

À = E Pprey Pprey (Dpred(V1))2 vi Pprey ; V = V1 pred

= 314 V1 l/Rpatch = Vi pred

First, the equation for the patch encounter rate, w2, is from Comment 8. The
second equation is from Comment 9 and specifies the prey encounter rate, À,
by also taken the attack success, E, into consideration The third equation speci

I fies the average patch residence time, hw1, as it was derived in Comment 10
In a specific patch scenario ii is only the perceptive distance, Dpred, and the

speed, v1, which are not determined and the equations show that the rate of en
countering patches, w2, is constant whereas the (intrapatch) rate, of prey en
counter and the iate of leaving patches both are proportional to speed, i e A cc

Dpred2 v1 and °i cc Vi If the reactive distance was constant independently of
the speed then the average prey-encounter rate, e cc Vi/(constant + Vi), bears an
increasing relationship to speed and the predator would benefit from using its
maximum speed (when the energetic cost of locomotion are neglected). If the
reactive distance bears some decreasing relationship to speed then it seems sen
sible to assume that this decrease still allows the prey-encounter rate kernel (=
search volume rate), /3prey lt(Dpred(Vi))2 Vi, to increase with increasing speed
Suppose Dpred(Vi)2is inversely pioportional to a constant plus Vi, i e introduc
ing a convenient notation for the constants,

/ /3preymaxht
Dpred(V1) =

V VImaxVO+Vi

then the encounter rate kernel becomes
V1

/3prev (vi) = Pprey max
VimaxVO+VI

where v1 max is the speed that would result in the maximum kernel, Pprey max, if
the reactive distance was constant and equal to the reactive distance during rn
terpatch travel at the sustained speed, VO < Vimax (see Figure 18). The speed V1 max

is considered the maximum possible speed of the predator Such a burst speed
can only be maintained during short periods of time which is why the predator
is considered to trave1 interpatch at the lower speed VO That is

Vi max = VO Pprey max /130 prey

with Po prey denoting the encounter kernel at speed vo The prey encounter rate
becomes

Å_Àmax
Vi

V1
— VO + Vj

where Àmax = 13 prey max Pprey. The probability of being in a patch is

7)VO

T1VO+Vl
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and the average prey-encounter rate becomes
Vi 1

e = Àmax 77V0.
V1maxVO+Vi 7)Vo+Vi

This rate shows a maximum at an intermediate speed, v1 because e be
comes very small at small speeds (due to small kernel) as well as at large speeds
(due to small residence time). The maximum becomes

/

________

/ VOemax = Àmax ) = Àmax )J+\/VimaxVO V0+VioptIi7

and it is attained at the speed

_________________

I Vi max / /3prey max
Vi0t = Vo 7) _1) = V0 77j —1

VO 13o prey

This optimal swimming speed is smaller than the sustained cruising speed,
v0, unless VO is very small. It can be shown that

77 1 i
Vimax < V0p < VO if Vimax < VO < Vlmax1+77 1+7) 1+7)

In continuation of the larval herring example from Comments 8 and 9 sup
pose the equivalent random (non-patchy) prey density is Po prey = i nauplii l
with a = 100 times more dense intrapatch prey density, Pprey = 100 nauplii

The attack success is put to 10% (e = 0.1). With a speed of V0 = 1 cm s
and a perceptive distance of Dopred Dpred(VO) = 1.5 cm the prey-encounter rate
kernel becomes/3Oprey = 7cm3 s. Suppose the maximum kernel represents an
increase of 50%, i.e. /3prey max = 10.5 cm3s. Then V1 max = 1.5 cm s and the
optimum speed becomes Vi0t=O.O7cms. The perceptive distance at this
speed is Dpred(Viopt) 2.4 cm and the equivalent maximum average rate of prey
encounters becomes e = 5.8 h-1 with a maximum rate of Amax = 0.105 S1 (
378 h-1). The interpretation of this result is as follows. On encountering a patch
the predator continues to swim in a straight path but with reduced swimming
speed thereby increasing its reactive distance and its probability of staying
longer time in the patch. In the present case the reduction in speed is more than
10-fold, which increases the average sojourn time (11w1)in a patch of radius 10
cm from 13 s (with Vi = VO) to more than 3 min. The reactive distance is consid
ered to increase ca. 60% at this reduced speed and the combined result is that
the larva, on average, encounters food organisms at a rate of 5.8 per hour, which
is more than double the rate, e(Vo) = E /3Oprey Pprey 77 = 2.5 h, had the larva
continued through patches with unreduced speed. The fraction of time the lar
vae are foraging inside patches become ir=0.125, i.e 12.5% compared to 1%
in case of = 77 when V1 = vo. The index of dispersion for counts, JDC, in
creases likewise from 3 to 4.8 in case of Rpatci = 10 cm.

The main purpose of this herring case is to exemplify the effect of introducing
behaviour into the IPP patch—prey model. Some of the input-parameter values
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are questionable or difficult to assess. For example, the attack success for 1.2
cm herring larvae feeding on copepod nauplii is more likely in the order of 50%
(Munk & Kiørboe 1985). We maintained the 10% value used for first-feeding
larvae in Comment 9 for comparative reasons because the average prey density
of i per litre (with 100 per litre in patches) then produces the same encounter
rates as the case considered in Comment 8 with an average of 0.1 (with 10 in
patches) nauplii per litre without considering the effect of a limited attack suc
cess (i.e. e = 1). In general estimates of parameter values are difficult to obtain.
An example is estimates of searching rates for similar-sized herring larvae,
which vary by more than one order of magnitude (see Munk & Kiørboe op. cit.
and references herein).
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Notation

c.d.f. Cumulative (probability) density function

Cpatci Concentration of patches, Le. number of patch centres per unit
of volume

c.v. Coefficient of variation, i.e. standard deviation to mean ratio

dNND Nearest neighbour (particie) distance

Dpred Perceptive distance of a predator

e Average rate of encounters

Exponential distribution (= Erlang with one phase)

E2 Erlang distribution with two phases

E(.) Expectation or mean of the stochastic variable in the bracket;
referring to the time-stationary IPP

Eevent Expectation operator in the event-stationary process (i.e. an en
counter took place at time 0)

Probability density function

F Cumulative probability function

g Probability density function

H2 The hyperexponential distribution (with two exponential phases)
or the mixed exponential distribution; specified by the three
parameters (p, Yi, ‘Y2)

i, j Indices mainly used to designate states or phases

IBM Individually Based Modelling or Models

ID Index of dispersion

IDC(t) Index of dispersion for counts, i.e. the variance to mean ratio
for counts during time/period t

IDC. Asymptotical limit for the index of dispersion for counts, used
as a measure of functional heterogeneity

IDCrnax Maximum dispersion for counts when patches only constitute a
small fraction of the sea, which equals the proportion of time
spent by the predator in patches (i.e. i = ir1 « 1)

IDCmjx Pojsson Index of dispersion for counts for the mixed Poisson distribution
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IPP Interrupted Poisson process; specified by the three parameters
(À, w1, 2)

MMPP Markov-modulated Poisson process

n Integer indicating a specific value of the number of encounters

Random variable denoting the number of encounters in the
interval (0, t)

O(t) Continuous function tending to 0 as zXt tends to 0

p First parameter of the 1-12 distribution, which gives the proba
bility of an exponentially distributed interencounter time with
mean l/y. In the H2 patch scenario p is the probability that the
predator stays in the patch

Po The value of p, as explained below, at time 0

Given the time interval u has elapsed since the last encountei
p is the probability that the time until the next encounter is ex
ponentially distributed with intensity Yi

Prand Probability that a randomly sampled predator will encounter
the next prey according to an exponential distribution with in
tensity y’. In the H2 interpretation this is equivalent to the
probability that a randomly sampled predator is doing inter
patch foraging

p1(0, t), i = 0,1 The probability of no encounters up to time t given that the
predator was in state i at time 0. State 0 = interpatch area; state
i = patch area

p(0, t) The probability of no encounters up to time t, given that the
predator is occupying state i with probability ir at time 0, i.e.
the probability of no encounters in an interval of length t for a
stationary process

P{A IB) Conditional probability. The probability of event A given event
B has occurred

p,,(0, t) The probability of no encounters up to time t under the condi
tion that the predator is in state i at time 0 and in state j at time t

P(0, t) Matrix with the probabilities p1(0, t)

p11(n, t) The probability of n encounters up to time t under the condition
that the predator is in state i at time 0 and in state / at time t

P(n, t) Matrix with the probabilities p11(n, t)

P*(0,s) The Laplace transform of the probability P(0, t)

P (n, s) The Laplace transform of the probability P(n, t)
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p.d.f. Probability density function

PNR Point of no return, referring to the point in time where a starv
ing animal is too weak to feed

rprey Equivalent spherical radius of prey particies
r Random variable denoting the ciosest distance from the centre

of a spherical patch that the predator will come when passing
through the patch

RRatch Radius of spherical patches
S Parameter of the Laplace transform
Stdv (X) Standard deviation of the interencounter time
t Specific time value. Used with X and N
tcrlt Critical time unit or relaxation time determining the speed at

xvhich e.g. the index of dispersion approaches IDC.
T Random variable denoting the time to the firsr feeding

Mixing probability of the mixed Poisson distribution, i.e. with
probability u the number of encounters will be distributed ac
cording to a Poisson distribution with parameter Yi U

Vi pred, Vj Swimming speed of predator inside patches
VO pred, VO Swimming speed of predator in the interpatch area
Vpred Swimming speed of predator when assuming constant speed
arch Average patch volume
V(N) Variance of the number of encounters in the interval (0, t)

V(X) Variance of the interencounter time
w Random variable denoting the distance travelled through a

spherical patch by a predator travelling at a constant speed
w Specific value of the variable W described above
X Random variable denoting the interval between successive en

counters referred to as the interencounter time or interarrival
time

X Specific value of the interencounter time, X = x, indicating the
value of the interval between successive encounters

prey Prey search volume rate of predator
Ppatch Patch search volume rate of predator
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Yi Second parameter of the 1-12 distribution. In the H2 patch sce
nario y’ is the mean time between two successive encounters
within a patch

Y2 Third parameter of the 1-12 distribution. In the 1-12 patch sce
nario Y2 is the mean time between two successive encounters
when the predator leaves the patch

E Probability of successful pursuit, i.e. an encounter leads to in
gestion

Rate of prey encounters assuming a non-patchy environment,
i.e. the food particies are assumed to be completely randomly
distributed in space. Parameter of the environmental represen
tation of the IPP

A Rate of prey encounters when the predator is moving inside a
patch. A is the mean interencounter time as long as the preda
tor is foraging inside a patch

Fraction of the sea occupied by patches. Pararneter of the envi
ronmental representation of the IPP

p Density of food particies (prey) randomly distributed in space

POpLey, Pprey Density of food particies in the case of a non-patchy environ
ment and the higher intrapatch density, Pprey = 7)_I.

POprcv, when
these food particies form a patchy environment

Mean value of the time between encounters

Psarnp, p’rcs Mean value of the time to next encounter and time between the
preceding and the next encounter for a randomly sampled
predator

ir1,r0,r1 (t), o (t) Stationary and time varying probabilities of being in state 1
(patch area) or in state 0 (interpatch area)

Rate by which the predator leaves a patch. 01’ is the mean
patch residence time

Patch encounter rate. w21 is the average time spent on encoun
tering a patch

T Specific value, T = r, of the time to first feeding

The ratio between the patch encounter rate and the prey en
counter rate of the equivalent non-patchy scenario. denotes
the average number of food organisms the predator encounters
in the non-patchy case during an average patch search time.
Parameter of the environmental representation of the IPP.


