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Abstract
Feeding success is defined as the probability of capturing the prey organism assuming attack and is
deriVed from basic principles as a function of the mouth size of the predator, the prey width and the
precision of the feeding strike. The model is eValuated with reference to data from the literature on
larVal anchovy (Engraulis mordax) and larVal herting (Ciupea harengus) feeding on Artemia nauplii.

A theoretical attack-index of prey size preference is obtained from the model under the assumption
that larvae attempt to achieVe maximum food consumption. Optimum prey width appears to be linear

ly related to larval mouth size.

Introduction
The larval stage is probably the most dynamic life-history stage of marine fishes.
Radical developmental changes, daily growth rates of the order of 5-30 % in
weight and total mortality rates of high but virtually unknown magnitude charac
terize the species-dependent 2 weeks to 2 months period of time from hatching to
metamorphosis. The hypothesis that this period of early life holds the key to
understanding stock and recruitment relations has flot yet been rejected (Hunter,
1976).

Feeding success is just one of the many aspects of feeding behavior that is
difficult to escape in the process of understanding growth and starvation-induced
mortality of larval fishes.

This study is concerned with basic principles. We attempt to provide a first
answer to the questions:

What are the major causal factors controlling feeding success, how do we inte
grate these factors into a quantitative and testable theory and, in which way may
such a model be utilized from a feeding ecological point of view?

Focus is placed on clupeoid fish for two reasons the first of which is that the
attack behavior has been studied in detail for clupeoids. Secondly, feeding success
or conditional capturing probability is the result of a well-defined attack event.

Clupeoid larvae feed on.small zooplankton in particular the young stages of
copepods (Blaxter, 1979). Northern anchovy, Engraulis mordax, however, are
able to subsist for up to 20 days at a depressed growth rate on a diet of the (50 .tm
diameter) dinoflagellate Gymnodinium spiendens (Lasker et al., 1970, Theilacker
& McMaster, 1971). As other marine fish larvae clupeoids are visual feeders
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(Hunter, 1977b) and they appear to select individual prey (Blaxter, 1979). Cha
racteristics of the clupeoidal attack process are given in the next section. The
important thing, however, is that a feeding attack consists of only one strike. This
is flot a fixed rule of marine fish larvae. Hunter (op. cit.) provides examples on
other attack strategies and this seems to be the best way of indicating the limita
tions of the preseflt study.

Persistent attacks characterizes the feeding behavior of larval mackerel, Scomber
japonicus. If the first strike fails the larva often reposition for a second strike by
moving backward and so on. They feed on larger zooplankton right from the onset
of feeding. However, Hunter observed that Pacific mackerel became piscivorous at
10 mm length under rearing conditions. They carry prey larvae crosswide in the
mouth, periodically release and grasp prey until it dies and then swallow it. North
ern sennet, Sphyraena borealis, also exhibit piscivorous habits and they prefer
newly hatched fish larvae as food from age 10 days (Houde, 1972). Sennets seize
other larvae from the side, move the grasp to either head or tail and then without
losing grip swallow the prey (Houde, 1972). The same feeding behavior was
observed by Hunter in a rearing tank in Pacific barracuda, Sphyraena argentea.
They became sibling cannibalistic at age 5 days when the larvae were 4.4 mm long.

We return to the more peaceful feeding behavior of clupeoid larvae. These larvae
do not possess the ability to swim backward and their overall maneuverability
appears to be low compared to larvae of mackerel and plaice, Pleuronectes pia
tessa. This may explain the low feeding success of clupeoid larvae at the onset of
feeding (Blaxter & Staines, 1971). Feeding or strike success at initial feeding is
10 % for northern anchovy (Hunter, 1972) and 2-6 % for herring, Ciupea harengus
(Rosenthal & Hempel, 1969, Blaxter & Staines, 1971). Feeding success then gra
dually increases (Hunter, 1977b), reaching 90 % in about 3 weeks in anchovy
(Hunter, 1972) and 90-100 % in about 7 weeks in herring (Blaxter & Staines, 1971).

For some reason it has become standard to report feeding success in relation to
age. However, live larvae of the same age may deviate greatly in size. I have
observed i month old live and apparently healthy larvae of herring (and various
other species) that deviate up to a factor of 2 in length. Do such larvae operate with
the same strike probability of capturing identical prey? Prey size characteristics are
also factors which need to be specified in relation to feeding success. Other prey
characteristics than size such as spines and other protective structures, color and
avoidance behavior are also believed to play a certain role for selection patterns in
larval fishes (Hunter, 1977b). In this study, however, we do flot deal with the
dynamics of the entire feeding sequence. Interest is focused on the last part of the
feeding sequence: the attack.

Fundamentals of the attack process
Prior to an attack the larva slowly approaches the sighted prey, adjusting its body
to compensate for movements by the prey and, at the same time, forms the charac
teristic S-shape striking posture (Hunter, 1972; Rosenthal & Hempel, 1969; Blax
ter, 1965). The attack begins when the larva opens its mouth and straightens its
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body. The larva darts forward and captures or misses the prey organism within
10 ms (Hunter, 1972). Clupeoid larvae do not follow a prey if the first strike fails
(Rosenthal & Hempel, 1969) and there is no handling time involved if the strike is
successful. The prey is engulfed by the mouth instantaneously and passes rapidly to
the posterior end of the gut where digestion takes place (Blaxter, 1965; Hunter,
1972).

During larval life the strike gradually becomes integrated with swimming move
ments (Hunter, 1977b) but, in principle the attack behavior remains the same.
Quantitatively, however, certain changes occur as the larva grows. The distance
between the larval snout and the prey organism at the start of the attack increases
roughly in direct proportion with larval length (Hunter, 1972). Larval darting
speed, however, also increases with length (Hunter, 1972) implying that the at
tack-time remains almost constant at the 10 ms independent of the length of the
larva. Tt seems as though the probability of the prey organism moving during the
attack is very small and independent of larval length. However, the probability of
the prey organism escaping during the initial stages of the feeding sequence is not
negligible. We know from Hunter’s (1972) anchovy study that the principal cause
of failure in continuing a feeding sequence is an inability of the larva to closely
approach the prey while forming the S-shape posture.

Development of fins, improved swimming abilities, maturation of sensory sy
stems and increasing mouth size of the growing larva are believed to play a role for
feeding success (Blaxter, 1965; Rosenthal & Hempel, 1969; Hunter, 1972, 1977b).

Problem statement
Interest is focused on the microscale events: clupeoid larvae attacking prey orga
nisms. We are flot here directly concerned with the feedback mechanisms that
determine perception, reaction and successful approach to various prey organisms
by the fish larva. Assuming the fish larva has managed to achieve the attack
posture we simply ask what is the probability of capturing the prey organism. This
probability of a successful strike is referred to as feeding success and we are in
particular interested in obtaining a relationship that adequately describes the feed
ing success 6(l,d) as a function of predator length, i, and prey dimension, d.

Idealization of a feeding strike
A feeding strike may be considered as a simple biological experiment. Some ideali
zation is rieeded from the outset since we must reach a decision about what consti
tutes the possible outcomes of the (idealized) experiment before the event of a
successful feeding strike can be properly defined.

Fish larvae of length I are identical and the attack-distance is independent of
prey size. The prey organisms do flot move during strikes and they are taken end on.

The larva operates with a certain precision in a feeding strike. Or, alternatively,
looking at the situation from the mouth of the larva, the prey organism approaches
this target area with the same precision. Thus, a series of feeding strikes by the
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larva of length Ion identical prey organisms parallels the distribution of shots fired
at a target; the bull’s-eye being the centre of the mouth. Let (x,y) be the coordinates
representing the errors of a shot with respect to two orthogonal axes through the
mouth mid-point. This defines the possible outcomes of the idealized feeding strike
experiment as being ali points in the xy-plane.

There is apparently no good reason to expect successive errors or outcomes to be
interrelated or, for example, to occur more often in one direction than in any other
direction. In addition, the mouth or the target area may be described as a circular
area in a first approximation. Thus, there is no need to operate with a two-dimen
sional stochastic variable (X,Y) in describing the outcome of the experiment be
cause the relevant information lies in the distance Z = (X2 + Y2)+ from the origin,

Fig. 1. Requirement for a successful attack in the model.
The entire prey particie of cross-diameter d, the bullet
in the firing-of-gun-analogy, must hit the target, the
mouth of the larva with diameter m(1).

Feeding success: [rn(1) — d]}

i.e. the mouth midpoint. The situation of this idealized experiment is depicted in
Fig. 1. A circular cross-sectional area of the prey organism is assumed. An outcome
is described by the distance z and the event ‘a successful feeding strike’ occurs if Z
is less or equal to

z(1,d) =-j[m(I) — d] ;m(l) d, (1)

where m(l) is the mouth diameter of the larva of length i and d is the width or
cross-diameter of the prey organism. Fig. i shows a situation of the occurrence of
this critical distance i.e. the entire particle is just inside the target area. Each
possible outcome may thus be classified as ‘success’ or ‘failure’ and the stochastic
variable of interest becomes a simple Bernoulli variable:

i (success) ifZz (i,d)
S= . (2)

0 (failure) ifZ>z(i,d)

We wish to obtain the probability of success

3(l,d) = Prob{S = 1) = Prob{Z z(l,dp)I (3)
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The probabihty of a successful feeding strike
We may formalize the simplifications considered in the-firing-of-gun-analogy as
follows. The errors in x and y directions are independent, the corresponding mar
ginal density functions are continuous and the probability density at (x,y) shows
radial symmetry. From this it follows directly that the error in any direction is
normally distributed with mean zero and some variance cr2 (Rao, 1965). Thus the
distribution of shots is given by a bivariate normal density which by an integration
within a circie of radius z from origin transforms into the probability density of Z,
i.e. the distance between the centers of the mouth and the prey organism immedi
ately after the attack, cf. Fig. 1. The result is the Rayleigh distribution,

;zO (4)

Hence the cumulative distribution function,

F(z)=Prob{Zz}= JZf(r)dr= i _exp{_-%} (5)

from which we obtain the feeding success, Eq. (3), by replazing z by the critical
distance z(1,d), i.e. from Eq. (1),

(1,d) = i — exp {— ---- [m(l) — d]2 (6)

where the larval mouth-diameter, m(1), usually is expressed as a linear function of
length,

m(l)=b11+bo (7)

The parameter of precision in the feeding strike, cr, is considered constant for ali
larval sizes.

Estimation procedure
From Blaxter & Staines’ (1971) data on the percentage of feeding movements
ciassified as ‘successful’, minimum and maximum values of success probabilities
were obtained for herring iarvae of different iengths. This measure of feeding
success, however, is flot the same as the defined in Eqs (3) and (6). Blaxter &
Staines feeding success equals

Prob {SuccesslReaction} = Prob{SuccessAttack) Prob{AttackReaction) = Po
A reaction denotes the start of a feeding sequence and may be defined as an orien
tation of the head toward the prey sighted (Hunter, 1972). In Blaxter & Staines’
notation the feeding success gives the joint probability of a feeding sequence resui
ting in an attack that is successful. The ö gives only the success probability as
suming attack. Thus, in order to utilize Biaxter & Staines data it is necessary first
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to obtain the probability of attack (i.e. a complete feeding sequence) assuming
reaction,

Po = ProbfAttack Reaction) (8)

A continuous curve was eye-fitted to the graph presented by Blaxter & Staines
(1971) on percentage of feeding movements ciassified as ‘unfinished’ from their
1967 experiments using Artemia nauplii as prey. A couple of functional relation
ships were tried and 0.1 + 0.8 exp(—0.05 t) was found to give a reasonable fit.
After transformation into length according to Blaxter (1968); / = 0.1786 t +

7.5 (mm), t in days (eye-fitted model), we then obtain i
— Po and, hence

Po = 0.9 — 6.531 exp(—0.281) (9)

where i is in mm. The graph is shown in Fig. 2.
Using Eq. (9) the minimum and maximum values of success probabilities from

the Blaxter & Staines study were divided by Po in order to obtain interval-estim
ates of &

From Eqs (6) and (7) we get, with

b1

(10)
b0 — dp

that

=1—expf—(al+I3)2 (11)

or

[—ln(1—)]ia1+f3 (12)

Making this square-root-negative-log transformation of the (i — ö)-intervals, it

was possible to draw a straight line through ali the transformed intervals (a =

0.2157 mm and /3 = —1.586). The resulting feeding success, ö, is depicted against
larval length in Fig. 3. Note the S-shaped form. The diameter of a prey organism,
d, and the precision of the strike, u, can now be obtained from Eq. (10):

b1

oV3b (13)

Hunter (1977a) obtained the values b1 = 0.0366 and b0 = 0.0431 mm for the
coefficients of mouth width of larval anchovy which implies

0.060 mm
(14)

d=0.3i3mm

Tt has been necessary to apply this ad hoc procedure in estimating tr and d because
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Fig. 3. The probability of an attack
resulting in ingestion of prey. Model
estimated from data in Blaxter & Stai
nes (1971) on feeding success of larval
herring attacking freshly hatched Ar
temia nauplii.

Completed feeding sequences (percent)
100

8 9 10 11 12 13 14 15 16 17 18 19 20
Larval length (mm)

of lack of appropriate data. There seems to be no point in trying to obtain estima
tes of the variance of the estimators in this situation. Simultaneous data on length,
mouth width and feeding success of individual larvae are needed in order to apply
sound statistical principles. The work here merely suggests a testable theory which
may be used as a guidance for future design of microscale feeding studies in the
laboratory.

Fig. 2. The probability of a reaction
to prey leading to a complete feeding
sequence (i.e. attack) in the model.
Points represent smoothed-out data
from Blaxter & Staines (1971). I I I I

Feeding success (percent)
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70 —
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30 — 3(l) = i —e216t 1.59)
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0 I
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Resuits and discussion
The probability of an attack
Attacks occur only in complete feeding sequences. The important thing is that the
event, ‘a reaction to prey results in attack,’ is stochastically independent of the past
feeding behavior during that particular day. The probability of this attack event,
Po, however, is flot independent of the past feeding history starting right from the
commencement of initial feeding. Po expresses the ability of the larva to approach a
sighted prey, adjust its body to compensate for movements by the prey and, at the
same time, forming the S-shape striking posture. In the model Po increases by
length according to

p(1) = p — c0e1 (15)

This is, unfortunately, a good example of bad modelling. The functional relation-
ship in Eq. (15) is chosen more or less at random because it provides a reasonable
good fit to the data available. Hence, the parameter specification in Eq. (9) and the
graphical representation in Fig. 2. In the preseflt context Eq. (15) or any other
empirical curve fitting model suffices because we only need p0(1) in order to trans-
form Blaxter & Staines’ (1971) data into feeding success. But from a feeding
ecological point of view Eq. (15) is useless. It is necessary to consider the fuflda
mentals of the feeding sequence dynamics ifl order to develop an adequate Po
model. This will flot be an easy task because the crux of the matter lies ifl an inter
action between larval mobility, prey visibility, prey avoidarice behavior and other
biological factors. A first step could be to develop an appropriate random walk
model for copepod movements and then obtain the probability of the copepod
jumping out of the predators visual field etc. We shall flot go into that here.

In addition to the reservations with respect to the ecological applicability of the
fuflctioflal form of Eq. (15), the final form given in Fig. 2 should be interpreted
with care. The disagreement concerns in particular the level of the asymptotic
value, Pm

Rosenthal & Hempel (1969) reported that the frequency of attacking in percent
of S-shaped positions for Downs herring larvae were 13 % at the end of the yolk
sac stage (i 9 mm), 25 % 4-5 weeks post-hatching (i 15 mm) and approxima
tely 50% about 7 weeks post-hatching (i 20 mm). Since a feeding sequence may
end at every stage up to and including the final strike posture (Hunter, 1972),
Rosenthal & Hempel’s frequencies must be deduced with a factor that gives the
probability of a reaction resulting in a S-shaped position before we can compare
with Po:

Po = Prob{Attack Reactionj = Prob(Attack I S-shape} . Prob{S-shape Rèactionl

In any circumstance Rosenthal & Hempel’s values are considerably less than the
values of Po obtained from Blaxter & Staines (1971). Hunter (1972) reports that
about 40 % of all feeding sequences were completed for larval anchovy indepen
dent of age. However, events may occur faster for a species growing at 18 °G so
Hunter’s 40 % could be compared with the asymptoticp0-value of 90 % in the
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case of Blaxter & Staines (1971) and 50% or less in the case of Rosenthal &
Hempel (1969). Part of the discrepancy inp0-values may be caused by differences
in the size of prey. Rosenthal & Hempel used Artemia nauplii and wild plankton
but after 3 weeks metanauplii of Artemia were also used.

The Rayleigh distribution
The Rayleigh distribution is mathematically convenient to work with because of
the analytically tractable form of the cumulative distribution function, Eq. (5).
This is not the case for more wellknown probability distributions that have a
certain resemblance in shape with the Rayleigh distribution such as the log
normal, the Gamma or Erlang and the Maxwell distribution in speed. The Rayleigh
density, Eq. (4), starts in zero and reaches a maximum at a, the mode, after which
it levels off almost like the tail of the normal distribution, N(0,o2).

The mean and standard deviation of the Rayleigh distribution are

E{Z1 = o(i/2)+ = 1.253 ‘i
(16)

S.D.{ZJ = a(2 — ir/2)+ = 0.6551y

Thus, as ci decreases, simulating increased precision of the attack, the probability
mass moves towards zero, the bull’s-eye, but the coefficient of variation remains
constant at 0.6551/1.253 or 0.5227.

Percentiles of the Rayleigh distribution are easily obtained from Eq. (5). The
requirement

PF(Z)=1_exp{_-} ;z0

gives

z = u[—2 ln(1 — p)]+ (17)

In particular we obtain

1.177 p=.50 (50%)

z= cr• 2.448 p=.95 (95%) (18)

3.717 p = .999(99.9%)

Basic characteristics of the Rayleigh distribution are thus directly proportional to
the parameter of precision, cl.

The parameter of precision
The assumption of u being constant is not in conflict with the hypothesis of
increasing precision in the feeding strikes of larger larvae due to a maturation of
sensory and locomotor systems. This is illustrated in Fig. 4. The figure is not drawn
to scale since anchovy larvae attack prey organisms at a distance of only 7 % of
their body-length (Hunter, 1972). An 18 mm larva, for example, thus starts the
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Fig. 4. Two dimensional representa- Prey
tion of the precision of the larva’s strjke
in the model. A larva of length 1 strikes
at the prey particle at a distance d1 with

1.2lstrikesataprey
Predator

stance d2 = 2d1 with improved angular
precision ç2 q1/2. Thus, the strike d
precision at the distance of prey, u, re- ‘

d
mains constant.

attack at a snout-prey distance of 1.3 mm. This matches with Rosenthal & Hem
pel’s (1969) picture of an 18 mm herring larva in attack posture but, otherwise,
attack distances for herring larvae are apparently flot reported in the literature.
The essential point in relation to Fig. 4, however, is that the attack distance
doubles as the larva grows twice as long but the parameter of precision, a, remains
constant implying almost a doubling in the angular precision of the strike.

We are at present flot able to reject this very simple way of modelling an in
creasing precision of the strike with increasing lerigth because Blaxter & Staines’
(1971) data reveal a straight line in the plot of transformed feeding success against
length according to Eq. (12). This somewhat supports the testable hypothesis of cr
being constant but, clearly, a new and complete data set is needed in order to in
vestigate statistically the validity of the entire theory.

Feeding success and larval length
The top picture of Fig. 5 depicts the Rayleigh density for the èstimated precision of

= 0.060 mm. The median (50%) and the 95 % and 99.9% percentiles, com
puted from Eq. (18), are shown and indrawn as dashed circles on the target area at
the bottom picture. However, only half of the target area is shown. Note that the
Rayleigh distribution is flot defined on the negative axis since the distribution only
refers to the numerical strike-error measured from the mouth mid-point. Prey
particles with the estimated diameter of 0.3 13 mm are shown as small circles at a
position of the percentiles. The large half-circles represent the mouth area of
anchovy larvae. The mouth diameters are:

0.409 mm if 1= lOmm

m(l) = 0.03661+ 0.0431 = 0.592 mm ifl = 15 mm (19)

0.775 mm ifl=2Omm

The probability distribution at the top picture governs the strike-error for all
larval sizes. The most likely error to occur in any single strike is 60 tm, i.e. the
mode. 50 % of a great number of strikes are within the distance 71 tm (i.e. the
median) but the mean error is 75 m.

The critical error-distance for a 10 mm larva is only (409-313)/2 or 48m, so
less than 50 % of the strikes by 10 mm larvae are successful. The critical distance
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strike-error Z, the distance between the centres of / /
the mouth and the prey in the feeding strike. /
Bottom: The diameter of the mouth m(l), for a .1 /
10, 15 and 20 mm long larva (i.e. heavy outlined 7

/
haif-circies) and the 50%, 95 % and 99.9% per- /
centiles ofZ (i.e. dashed haif-circies). Heavy out- 2
lined circies represent prey particies at the position — —

of the percentiles. A 15 mm long larva, for example,
will capture the prey in almost 95 attacks out of n(15)

100 attacks because its mouth almost encircles the —

95 % -percentile prey particle. Mouth data for lar
val anchovy, Engraulis mordax (Hunter, 1977a). m(20

.4 —

for a larva twice as big, however, is (775 -313)/2 or 231 tm which is more than the
99.9 % percentile of 3.717- 60 or 223 j.tm. Thus the probability of an unsuccessful
feeding strike is virtually zero when the larva has reached a size of about 20 mm.

The complete quantification of the feeding success, 6, is depicted in Fig. 3, i.e.
Eq.(11) or

6(1) = 1— exp{—(0.216l—1.59)2} ;1 7.37mm (20)

This expressiori is mainly derived analytically from basic principles but its final
form is based on three assumptions the first of which is the constant a as discussed
previously. The second assumption is a linear relationship between mouth size and
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length of the larva. This assumption is flot based on any biological hypotheses but
simply belongs to the category of empirical work or bad modelling. In case of
juvenile fish we may expect that the mouth width is directly proportional to the
length because metamorphosed fish grow approximately as similar bodies. But this
is flot believed to be the case for larval fish as indicated by a power in weight
length relationships that exceeds 3 (Laurence, 1978). In addition, mouth data are
usually reported over a narrow range of length preventing us from distinguishing
between various relationships from a rough curve-fitting point of view. Thus the
length-power of 1 in Eq. (20) should be interpreted with care. The third assump
tion is that only one size prey, d, was available for the herring larvae in Blaxter &
Staines’ (1971) feeding success experiment. This is probably a reasonable assump
tion since food consisted of freshly hatched Artemia nauplii. However, just a slight
domain of variation in the prey size available may bias the feeding success resuits
because it is a well established fact that larger larvae prefer to eat larger prey. The
importance of specifying prey size for testing any refutable hypothesis on feeding
success has already been indicated in the previous discussion.

Assuming Eq. (20), ci and d were estimated from Hunter’s (1977) anchovy
mouth-length Eq. (19). Alternatively, Blaxter (1965), usiflg data from Blaxter &
Hempel (1963), showed a length-regression line for the vertical gape of the jaws of
young herring larvae living on their yolk supply. This line appears to be

m(l)=0.03821—0.0147(mm) (21)

Hence, from Eq. (13),

ci = 0.063 mm
(22)

d = 0.267 mm

This only changes things slightly in Fig. 5. The mode, the median, the mean etc. of
the Rayleigh distribution will increase slightly and the mouth sizes and the prey
width will decrease. But the strike success, 6, of course, remains the same.

Two factors somewhat support this feeding success model. The estimates ob
tained for prey-dimension (0.313 mm and 0.267 mm) match with dimension data
for Artemia nauplii. Copepods are usually taken end on with the antennae folded
back along the body (Blaxter, 1965, Hunter, 1977a). Mean dimensions ofArtemia
in the tank of Hunter’s (1977a) 4 hours feeding experiment were 0.260 mm width
and 0.525 mm length whereas the mean size of the Artemia actually selected by
6-10 mm anchovy larvae was less (0.236 mm x 0.433 mm). Secondly, Hunter (op.
cit.) obtained the percent of anchovy larvae with one or more Artemia nauplii in
stomachs after the 4 hours of feeding and he concluded ‘for ingestion of prey to be
independent of mouth width, the width of the mouth must exceed that of the prey
by about 1.5 times’. If ‘independent’ is defined as a feeding success of at least 95 %
then it follows from Fig. 5 that this criterion corresponds to about ‘2 times’.
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Feeding success in a series of strikes

In this and the subsequent section we go more closely into Hunter’s experiment in
terms of the present model. Let N, denote the total number of strikes a larva
exedutes during t hours. The outcome of the i’th strike is defined by a Bernoulli
variable given in Eq. (2) and the total number of ‘successes’ or prey ingestions
during the t hours feeding period becomes

St=S1+S2+ . . . (23)

The outcome of each strike is stochastically independent of the outcome of all
other strikes and it thus follows that

Prob{S = xIN = n) =(n)x(l
—

;x 0,1,2,.. .,n (24)

i.e. Si N is binomially distributed. The mean and variance are

E{SIN, = n) =
(25)

Var{SIN = n)=n(1
—

where the feeding success, , is given by Eq. (6).
We are now able to obtain the probability that a larva ingests one or more

nauplii in executing n feeding strikes.

43(l,d) Prob{S 1n} = i — Prob{S = 0n)

= i — (1 —
= i — exp {— [m(l) — d]2} ;m(1) d (26)

That is, the probability of at least one successful strike in executing n strikes with
precision a equals the probability of a successful strike executed with precision

= (27)

As an example we put d = 0.236 mm which is the actual mean prey width ob
tained from stomach analyses in Hunter’s experiment. The mouth size is given by
Eq. (19) and the strike precision of a = 0.060 mm presumably applies to larval
anchovy. This brings Eq. (26) on the form

= 1— exp{—n(0.21571— 1.137)2 ;l5.27mm (28)

In case of only one attack, n = 1,we simply obtain the feeding success, i.e. 6 =
An 8.5 mm larva, for example, operates with a feeding success of 38 % according
to this model. Hunter (1972) reported a feeding success of 37% for anchovy
larvae fed Artemia for the first time at length 8.5 mm (age 17 days). This supports
the assumption of a 60 pm strike precision.

Table i indicates the sensitivity of 3,,(l) to changes in larval length and number
of feeding strikes The feeding success is most sensitive to changes in length at the
point of infiexion which always occurs at a feeding success of 39.35 % (see the
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Table 1. The probability in percent that larval anchovy of the given length ingests
one or more Artemia naupili of width 236 rm in executing the stated number of
feeding strikes with precision 60 m. Derived from the feeding success model,
Eq. (28).

Percentage chance of capturing at least one prey in executing
Larval
length 1 5 10 50 100
(mm) (feeding strikes)

5.5 0.24 1.2 2.4 12 22
6.0 2.4 12 22 71 92
6.5 6.8 30 50 97 100
7.0 13 50 75 100 100
7.5 21 69 90 100 100
8.0 29 82 97 100 100
8.5 38 91 99 100 100
9.0 48 96 100 100 100

section on feeding success and prey width). This happens at i = 8.55 mm when
= 60 m and it appears from the column for 1 feeding strike that the feeding

success increases from 38 % to 48 % when larval length increases from 8.5 mm to
9.0 mm. The other columns represent feeding success with the improved strike
precision u = 60 . m. In case of n = 100 we get a strike precision of a1 =

6 m and the point of infiexion occurs already at length 5.60 mm. A 0.5 mm in
crease in larval length implies an increase of 18 m in the mouth width, cf.
Eq. (19). Thus, it is flot surprising that the feeding success increases from 22 % to
92 % when larval length increases from 5.5 mm to 6.0 mm.

Feeding success in a period of time

The feeding success 6(i,d) as given by Eqs (26) and (28) relates to ‘percent of
anchovy larvae of length i with one or more Artemia in stomachs after executing n
feeding strikes’. A stochastic description has been applied only because the out
come of each feeding strike is uncertain. The total number of feeding strikes, N,
executed by individual larvae represents an additional source of stochasticity in
Hunter’s (1977a) caiculations for 0.5 mm length ciasses of ‘percent of anchovy
larvae with one or more Artemia in stomachs after 4 hours feeding’.

In the absence of data on the number of feeding strikes executed by individual
larvae over prolonged periods of time and under known food conditions we en
counter problems in judging the validity of any statement concerning the probabi
lity distribution of N. Based on the reasoning given below we shall, however, take
the liberty of assuming that a Poisson distribution in a first approximation
governs N,

Prob(N=nJ= exp(—) ;n=0,1,2,... (29)

E(N} = Var(N} = ILt (30)
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We then interpret Hunter’s caiculations as estimates of the unconditional feeding
success

l,d) = Prob{S 1)

=Prob{S 1IN = n} Prob{N = n}

= I,,(l,d) Prob{N = n)

= i
—

exp(—(l,d)J (31)

Thus equals a weighted sum of the ‘s, the weights being the probabilities of
executing n attacks. The last expression in Eq. (31) follows by inserting Eqs (26)
and (29) and utilizing ex = x/n! but it may also be obtained directly as we shall
see presently.

The reasoning underlying Eq. (29) is as follows. Let s(l) denote the volume of
water searched per unit time by the larva and assume that the nauplii are distribu
ted at random with density y. This implies that the larva perceives nauplii in a
Poisson process with intensity ys(l). The total number of prey perceptions in a
searching period of duration t is thus Poisson distributed with mean ys(l) t. Assum
ing that the larva reacts to a prey visually perceived with probability r(1) then the
total number of reactions in the time period t follows a compound binomial distri
bution, i.e. a Poisson distribution with mean r(l)ys(1)t. In other words the intensity
of the reactive process is simply given by reducing the intensity of the perceptual
process by the factor r(l). We may say that the point process is being ‘diluted’. The
probability of a reaction to prey resulting in an attack has previously been denoted
Po(l). The attack process represents again a thinning and the total number of
attacks in the interval of time (0,t) thus follows the Poisson distribution in Eq. (29)
with the reduced mean:

tPo(l) r(l) ys(l) t (32)

The last thinning occurs at the transition from the attack process to the ingestion
process. The probability of ingestion assuming attack is 5(l,d) and the total num
ber of ingestions thus follows a Poisson distribution with mean

F(ld lx
i pPtj

Prob{S = x} = exp{—(l,d),L} ;x = 0,1,2,... (33)
x!

and Eq. (31) is directly obtained as i
— Prob{S = OJ.

We rewrite Eq. (31) with the purpose of estimating p from Hunter’s observations,

— ln(1
— ) =

where is given by in Eq. (28). Assuming for the moment that the mean number
of attacks , , is constant (independent of larval length) then transformed 6’-data
plotted against ought to reveal a straight line through origin. Fig. 6A depicts the
situation. We obtain a fair fit with p 10 attacks the inconsistence in the last two
data taken into consideration. Larger larvae operate with a higher strike success
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—ln(l —)
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but Hunter estimated 6’ to 92 % for the 7.3 mm length class and only 82 % for
the 7.8 mm length class. Presumably this only reflects statistical variation as will
appear later. The length group 8.3 mm has flot been utilized in the plot because
Hunter (1977a) reported that ali 7 larvae from this ciass had one or more nauplii
in stomachs after the 4 hours feeding. This event is also likely to occur according to
the model because the associated probability is [(8.3 mm, 0.236mm)]7or0.97v,
i.e. 80 %. But Hunter also reported that the mean number of nauplii eaten by the 7
iarvae was 19 which thus seems to invalidate this computation of a mean 4 hours
attack rate of 10.
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We may alternatively proceed according to Eq. (32) and attempt to express as
an explicit function of larval length. Hunter (1972) reported that Po(l) = 0.40 (see
previous section on the probability of an attack). The next factor, r(1), is more
difficult to handle. We know virtually nothing about the interplay between percep
tion and reaction to prey. We do know that only a fraction of the prey organisms
perceived actually causes reaction in particular when the prey density is high. The
larva, for example, does not react to other prey while engaged in a feeding sequen
ce. Thus the assumption that the larva of length 1 operates with a constant probabi
lity of reacting to a perceived prey is questionable and this constitutes the main
reason for the cautional remark that the Poisson distribution only is a first approx
imation. In order to proceed, however, we simply assume r(1) to be constant. The
third factor in Eq. (32) is the prey density which was high and approximately
constant at 10 Artemia/ml in Hunter’s experiment. The fifth factor is the constant
time period of 4 hours. Thus, we assume that the major length dependency oft, is
due to the searching rate, s(l). Hunter (1972) observed that the mean distance at
which larval anchovy reacts to prey (at a high prey density) is 0.41. Searching takes
place with a speed of approximately 1.01/sec and prey reactions are believed to
occur on a cross-sectional area at the reactive distance. This implies that searching
rate (speed x area) increases in proportion to length in a power of 3 and Eq. (32)
thus takes the form:

fL = fl3

Fig. 6B replots Hunter’s transformed :.data against l and, plainly speaking, a
straight line gives a lousy fit. But let us again consider the stomach content of
8.3 mm larvae. With the model p = 0.03 we obtain a mean of 17 attacks and
17(8.3mm, 0.236mm) = 0.997. The event that Hunter’s 7 larvae were feeding
consequently occurs with probability (0.997) or 98 %. The strike success, how
ever, is only 35 % implying a mean stomach content of 17 0.35 or about 6 nauplii
which still is very low compared to Hunter’s observation of 19 nauplii. A stomach
content of 19 nauplii would be expected if the 8.3 mm larva had executed about
19/0.35 or 54 feeding strikes. This requires = 0.095 cf. dashed line on Fig. 6B.

We are, however, flot able to reject the strike success model based on Hunter’s
data. This is shown in Fig. 6C. Let us use the 6.3 mm length class as an example.
This class comprises 15 larvae and a Bernoulli approach is applicable because the
larvae are considered as identical and non-interacting fish, i.e. the larvae do flot
interfere with each other in their-feeding behavior. We proceed according to Eqs
(23)-(25) with N replaced by the number of larvae and replaced by 6. The
maximum likelihood estimator of ö is

— x
15

where X is the number of ‘successes’, i.e. larvae with one or more nauplii in
stomachs. The variance of the estimator is

Var(S*)= Var(X) = (1_*)

_______

152 15 15
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Hunter obtained X = 8 and hence, = 0.53 and Var(*) (0.13)2. Thus, 3’
may take a value anywherefrom about 0.53 —2 0.13 to 0.53 + 20.13 or from 27%
to 79 %. We see from Fig. 6C that the -graph computed from Eq. (31) for each
of the three models considered ( = 10, t = 0.03P and = O.0951) fails within
these ‘95 % confidence limits’ with only one exception at the 6.8 mm length class.
None of the three models can be rejected based on Hunter’s -data.

Feeding success and prey width

The feeding success is a function of the critical distance, Eq. (1), i.e. the quantity of
importance is the difference between mouth size and prey width:

m(l)—d

Thus, Iarvae of mouth size 1.0 mm feeding on 0.9 mm prey, say, operate with the
same feeding success as smaller larvae of mouth size 0.5 mm, say, feeding on 0.5-0.1
or 0.4 mm prey.

Except for a constant factor, a graph of feeding success against mouth size for a
fixed prey width, d, (e.g. Fig. 3) equals the right half-part of the normal bell,
N(d,2a) upside down. The left-part of the bell N(m(l),2G) upside down is similar
to a graph of feeding success against prey width for a fixed mouth size, m(1):

i— exp{_--[
m(l)—

j2} ;m(l) d

(34)
d—m(1) 2

=1 —exp
2u

;0<_d<_m(1)

In the normal distribution the points of infiexion occur at mean ± standard devia
tion, i.e. the most dynamic range of feeding success occurs at

m(l)—d=2 (35)

when the feeding success is 1 — exp(—) or 39.35%.
The domain of variation for all practical purposes occurs within 3 standard

deviations, i.e. 6o:

0 3(1,d ) 0.99 if 0 m(l) — d 6a
I,>

This explains the range of variation shown in each of the columns in table 1. The
mouth size of a 5.27 mm anchovy larva is equal to d = 0.23 6 mm. Thus, feeding
success is zero. Assuming = 0.060 mm the mouth size must grow to 0.236 +

0.3 60 or 0.596 mm before feeding success reaches 99 %. This occurs at length
15.1 mm and explains the relatively small variation of the 1-strike column. The
100-strike column may be interpreted as feeding success achieved with precision
0.006 mm. Thus, feeding success reaches 99 % already at length 6.25 mm when
the mouth size is 0.272 mm.

In continuation of the anchovy considerations we turn to an investigation of
Hunter’s (1972) food transition study:
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‘Feeding success of anchovy larvae dropped from 80 % to 40 % at age 17 days
when the prey was changed from Brachionus to Artemia nauplii, but in 2 days
their success increased to the former leve! (Hunter, 1972). Changes in mouth size
or other developmental changes could flot occur so rapidly, thus, the difference
appears to be attributable to experience.’ (Hunter, 1977b)

Kramer & Zweifel (1970) give the growth equation 4, = 3.32 exp(0.0555 t) mm
(t in days) for larval anchovy under standard rearing coriditioris. Assuming that
this equation also applies to Hunter’s study we get a mean length of 8.53 mm at
age 17 days implying a mouth width of 0.355 mm, Eq. (19). The width of the
Brachionus is 0.13 3 mm (Hunter, 1977 b) and with a strike precision of 0.060 mm
we then obtain a feeding success of 82 % according to the model. The transition to
0.236 mm Artemia represents an increase in prey width of 0.103 mm and this
brings the feeding success down to 39 %. The model is thus so far able to account
for Hunter’s observations. The drop to 39 % brings the feeding situation right
down in the centre of the most dynamic rarige, cf. Eq. (35), and for this reason
alone we expect a rapid increase in feeding success when the larvae start to grow
on the new diet of Artemia. A feeding success of 80% on Artemia nauplii requires
a mouth width of 0.451 mm or an 11.1 mm long anchovy larva. This length is first
achieved on day 22 according to the daily increase of 6 % in the length-age key
given above. An 8.5 mm larva must in fact grow 14 % per day in order to reach a
length of 11.1 mm in 2 days. This, perhaps, is unrealistic but we really need, for
example, length/mouth data before a definite conciusion can be reached.

In elucidating the graphs of feeding success against prey width we turn to larval
herring. From Eq. (21) we find mouth sizes of 0.367 mm and 0.749 mm for a
10 mm, respectively a 20 mm long larva. The strike precision, Eq. (22), is 0.063
mm and we get the feeding success

1 — exp[—31.S(d — 0.367)2] ;l = 10 mm, 0 d 0.367 mm
(36)

1 — exp[—31.5(d — 0.749)2] ;l= 20 mm, 0 d 0.749 mm

Fig. 7 depicts the two graphs which are identical in principle except for a parallel
displacement of 0.749 — 0.3 67 or 0.3 82 mm at the prey axis.

Feeding success (percent)
100

90

Fig. 7. Feeding success of larval herring 80

against prey wjdth according to the 70
model. The graphs of 10 mm and 20 60
mm long larvae are shown and the re- 50
spective mouth sizes indicated. If length

4010 mm, say, is taken as standard then
the feeding-success-graph of any other 30
fish Iength is given by dispiacing the 20
standard parallel to the prey axis ac- 10
cording to the difference in mouth size.

______________________________

0.1 0.2 0.3 0.4 0.5
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- rn(20) — m(10) = 0.382 rnni

(10) (20)

0.6 0.7 0.8
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An attack-index ofprey size preference

We assume that the larval predator of length I attempts to maximize food con
sumption when it has the choice of attacking various sizes of prey, x. If F denotes
the food consumed after one attack then, with reference to the feeding success
considerations in Eq. (2),

w(x) with probability ö(I,x)
F= (37)

0 with probability i — 5(l,x)

where o is the dry-weight of the attacked prey of width x and the feeding success
given by Eq. (34). Assuming

x)=oj0x (38)

we obtain for the expected food consumption resulting from one attack

P(l,x) = w(x)(l,x) = — exp [— (x — m(l))2 j} ;0 x m(1) (39)

Clearly, it has flot very much meaning to consider mean food consumption in rela
tion to one attack only. But the mean of total food consumed after n attacks
executed Ofi the same prey size is n P(l,x) and it is in this respect Eq. (39) should
be interpreted.

The mean food consumption as a function of prey size x starts in zero because
ingestion is zero although the fish larva operates with a high strike-probability of
‘capturing a point’. Mean consumption then increases dominated by the w-factor,
reaches a maximum at some prey size after which it decreases due to the -factor.
When the prey size equals larval mouth size the mean food consumption is again zero.

Differentiating P(1,x) with respect to prey width, x, equalling zero and applying
the inequality ln(1 + y) y show that maximum food consumption occurs at a
prey width x0 that exceeds m(1)/2 if q 2. This indicates a skewness to the left in
expected food consumption as a function of prey width.

It is tempting to interpret P(I,x) as an attack-index of prey size preference. More
precisely let X(1) denote the prey size larvae of length I will attack assuming that
they have the choice of attacking all sizes of prey, i.e. the larvae are distributed fri a
body of water which comprises prey organisms of ‘ali possible sizes’ in equal
numbers. Then P(1,x), normalized to unit area, represents the probability density
function of the stochastic variable X(l).

Clearly, each part of the process of feeding behavior needs to be quantified in
order to form a complete and testable theory of size preference. At present we do
flot even know whether such a preference curve is characterized by a tail to the left
(i.e. the predator prefers prey organisms almost as large as possible) or by, say, a
long tail to the right. The length preference curves obtained in this study do show a
skewness to the left but once again, they are obtained from a premature theory and
they only refer to the last part of the feeding sequence for one type of particular
feeders eating one type of food.
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Larval herring as an exampie
We take q = 3 as a first guess of the power in the weight-width relationship,
Eq. (38), of nauplii and copepodites. Assuming that the nauplii body-weight of
0.8 .tg-dry-wt used by Beyer & Laurence (1980) applies to the Artemia nauplii of
estimated width 0.267 mm, Eq. (22), we get with prey width x in mm,

w(x) = 42.0x3 jg-dry-wt (40)

Using Blaxter’s (1965) mouth-length relationship for larval herring, Eq. (21), and
the strike precision of u = 0.063 mm we obtain the attack-index of prey size pre
ference, Eq. (39), on the form

P(1,x) = 42.0x3{1— exp[—31.5(x— 0.03821+ 0.0147)2]) .tg-dry-wt (41)

where x and i are in mm. The feeding success factor equals the expressions in
Eq. (36) when larval lengths equal 10 mm and 20 mm.

A 10 mm herring larva achieves maximum food consumption at 0.242 mm prey
(Fig. 8) which is slightly less than the estimated width, d = 0.267 mm, of the prey
available in Blaxter & Staines’ (1971) feeding study. A 20 mm larva, however,
achieves maximum food consumption at 0.555 mm prey (Fig. 9) which is more
than twice d.

Mean food consumption per attack (eg-dry-wt)
0.3

10 mm herting larva

Fig. 8. Mean food consumption per
attack against prey width for a 10 mm
herring larva. Based on the feeding suc
cess model and the assumption that
dry-body-weight of Arteinia is propor-

I i I Itional to size (width) in a power of 3. 0 -i—

____________

0 0.1 0.2 d 0.3 m(10)

Prey size (mm)

A herring larva feeding on nauplii of 267 tm width would have to capture 9
times the number of prey to obtain the same ration as a larva feeding on cope
podites 555 .tm wide. The probability of a 20 mm herring larva ingesting a 267 tm
wide prey in a feeding strike, however, is 1.00 (Fig. 7) whereas the probability is
only 0.694 in case of 555 tm wide prey (Table 2). Thus, a 20 mm herring larva
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Mean food consumption per attack (g-dry-wt)
6

5 — 20 mm herring larva

Fig. 9. Mean food consumption per 2

attack against prey width for a 20 mm
herring larva. Based on the feeding suc
cess model and the assumption that
dry-body-weight of Arternia is propor
tional to size (width) ina power of 3. I I I

0 0.1 0.2 t 0.3 0.4 0.5 0.6 0.7 t
d m(20)

Prey size

Table 2 Optimum prey characteristics for various lengths of larval herring. Optimum implies that the
larva of length ion the average ingests more food by executing feeding strikes on prey of width x0(l) than
on any other prey size. The computation is based on the feeding success model and the assumption that
the dry-weight of prey is proportional to its width in a power of 3.

Food
Larval Mouth Prey Prey Feeding ingestion Preference ratios

length wjdth width weight success per attack*
x0(l) 2x0(1)

i m(1) xo(1) w(xo) (i,x0) P(1,xo) —100 100 —100
m(i) i w(i)

(mm) (mm) (mm) g-dry-wt (%) g-dry-wt (%) (%) (%)

5 0.176 0.109 0.0544 13.2 0.00718 61.8 4.36 1.07

10 0.367 0.242 0.595 38.9 0.231 65.9 4.84 0.60
15 0.558 0.393 2.55 57.6 1.47 70.4 5.24 0.45

20 0.749 0.555 7.18 69.4 4.98 74.1 5.56 0.37
25 0.940 0.726 16.1 76.4 12.3 77.2 5.81 0.31

30 1.13 0.900 30.6 81.1 24.8 79.6 6.01 0.27

Actual food ingestion resulting from any attack is either o(xo) (success) or 0 (failure).
The column gives expected food ingestion: w(xo) . 8(l,xo)

feeding on nauplii 267 .tm wide would have to execute on an average 9 0.694 or
6.25 times the number of attacks to obtain the same ration as a 20 mm larva
feeding on copepodites 555 m wide. On the other hand, a herring larva feeding
on copepodites 700 p.m wide would only have to capture half the number of prey
to obtain the same ration as a larva feeding on copepodites 555 im wide, i.e.
(700/555) = 2.0. But the success probability of 20 mm herring larvae feeding on
700 pm prey is only 0.073. On the average, a 20 mm herring larva feeding on
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700 .tm copepodites would thus have to execute+ (0.694/0.073) or 4.7 times the
number of attacks to obtain the same ration as a 20 mm herring larva feeding on
555 tm copepodites. Tt is in this way (stopping at the attack process) that we
intend to interpret Fig. 9 for a herring larva of 20 mm length. The optimum prey
width of 555 m is 6.25 times more attractive than prey 267 u.m wide and 4.7
times more attractive than prey 700 tm wide.

Optimum prey width (mm)

0.9- 7
0.8 -

y = 0.83x — 0.057 /‘

Fig. 10. Optimum prey width against -

mouth width of larval herring. Regres- 0.5

sion line is shown. Each point repre- 0.4 -

sents the prey width that optimizes the
mean food consumption per attack for 0.3 -

larvae with the associated mouth width.
Derived from the feeding success model 0.2
and the assumption that the dry-weight

0 i -of Artemia is proportional to body
width in a power of 3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Mouth width (mm)

Table 2 gives optimum prey characteristics for 5-30 mm long herring larvae.
The ratio of optimum prey width to mouth size is 0.62 for 5 mm larvae and
increases gradually to 0.80 for 30 mm larvae. A straight line seems to give a
reasonable fit (Fig. 10) to optimum prey width, x0(l), against mouth size, m(1):

x0(l) = 0.83 m(l) — 0.057 (mm), 5 mm l 30 mm (42)

This indicates incorrectly that the maximum value ofx0/m is 0.83 if the model for
some reason is applied to metamorphosed fish.

We know from previous considerations (see for example Fig. 7) that the feeding
success virtually is 100 % if the prey width is less than the mouth size minus
0.378 mm (i.e. 6cr). Hence

x(l) > m(l) — 0.378 (mm) (43)

Tt will thus be seen thatx0(1)/m(1) approaches one when i continues to increase
beyond 3 cm. As an example we may assume that the mouth-length relationship in
Eq. (21) also applies to metamorphosed fish. The inequality (43) then impliesx0/m
ratios forS cm, 10 cm, 20 cm and 30 cm fish that exceed respectively 0.802, 0.901,
0.951 and 0.967. The exact x0 values obtained as in Table 2 by maximizing P(4x)
result in x0/m ratios of 0.856, 0.917, 0.953 and 0.967 for the respective fish sizes
given above. The mouth size minus 6 times the strike precision thus represents a
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good indication of the optimum prey width in case of juvenile and adult fish
exhibiting feeding strikes according to the strike success model. However, piscivo
rous feeding in which the fish seizes relatively long prey from the side is probably
more common for the juvenile and adult stages. The strike success model may
perhaps apply to this grasping part of the attack but the subsequent manipulatiori
of prey involves handling time. Kislalioglu & Gibson (1976) found an optimum
prey size by minimizing the ratio of handling time to prey weight, i.e. a cost/benefit
ratio. The optimum prey width was approximately half the mouth size of the
predator and this result was found to agree closely with mean prey sizes of wild
fish.

Apart from the strike success model the value of q = 3 is the only assumptiofl
underlying the computation of optimum prey width in Table 2. Optimum prey
width, however, is flot very sensitive to changes in this exponent of width in the
width to dry-weight coflversion of nauplii and copepodites (Table 3). The most
sensitive range appears to occur at the nauplius stage where optimum prey width
changes by 5-10 % when q is reduces to 2 or increased to 4. Hunter (1977b)
arrived at an expoflent of about 2.5 for copepods. Size to dry-weight conversions
of nauplii are apparently flot yet available.

Table 3. Optimum prey width and its ratio to mouth size for various lenghts of larval
herring and three different exponents of the width of prey jo the power function de
scribing prey body-weight.

Ratio of optimum prey wjdth
Larval Optimum prey width jo m to mouth size
length

I Exponent jo the width to dry-weight relationship of prey
(mm) 2 3 4 2 3 4

5 92.9 109 119 0.528 0.618 0.676
10 217 242 259 0.591 0.659 0.706
15 365 393 413 0.654 0.704 0.740
20 528 555 576 0.705 0.741 0.769
25 698 726 746 0.743 0.772 0.794
30 872 900 919 0.772 0.796 0.813

Assuming a length to width ratio of about 2 for nauplii and copepodites, the
second last column in Table 2 gives optimum prey length in percent of predator
length. A 5 mm larva prefers to attack prey of 4.4 % of its own length (or, alternativ
ely, the larva is 23 times larger than the preferred prey). The figure for 30 mm
larvae is 6.0 % (17 times).

The last column in Table 2 gives the optimum prey dry-weight in percent of
predator dry-weight. The dry-weight of larval herring is obtained from the con
version formula reported by Laurence (1978):

w(l) = O.OO5l ,u.g-dry-wt ;1 in mm. (44)

A 10 mm herring larva, for example, weighs 100 tg (dry weight). The optimum
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prey size is about 0.6 p.g-dry-wt (cf. Table 2) and the 10 mm larva thus prefers to
attack prey of 0.6 % of its own body-weight. A larva twice as long weighs 2.0 mg
and prefers a 7.2 p.g prey. Thus a 20 mm larva prefers prey of about 0.4 % of its
own body-weight. In case of a 30 mm larva the preference ratio drops to about 0.3 %.

The optimum weight preference ratio is sensitive to changes in the width to weight
relationship of prey, Eqs (38) and (40). This is shown in Table 4. The assumption
that a 267 m wide prey weighs 0.8 tg (dry-weight) is maintained when the expo
nent q is changed. This means, of course, that the coefficient in the relationship,
w0, must be changed accordingly. Let us first consider a 10 mm herring larva. The
optimum prey width, x0, increases approximately from 220 .tm to 260 m when q
increases from 2 to 4 (Table 3). Although smaller these x0 values do not differ very
much from the 267 m and the optimum prey weights, w(xo,q), will thus be
smaller than 0.8 g but show a relatively small variation when q changes. It is to
be seen from Table 4 that the optimum prey size or the preference ratio changes
with about 15 % when q is reduced to 2 or increased to 4 in case of a 10 mm
herring. The situation for 30 mm herring is quite different. The optimum prey
width has increased to about 900 j.tm but is almost constant when q changes
(Table 3). A 900 wide prey weighs only 8.5 g according to the q = 2 rela
tionship. But the weight increases by a factor of about 3.6 when q is raised by one.
The weight reaches 112 g in the q = 4 relationship.

Table 4. Optimum prey weight in percent of the weight of larval herring
(predator) for three different width (x) to weight (ü) relationships ofprey.
The dry-weight of a 0.267 mm wide prey is 0.8 tg in ali cases.

Preference raelo 100 %
w(1)

• Larval Larval for ø(x(mm)) equal to:

Iength weight
I w(I) 11.2x2 42.0x2 157x4

(mm) (g-dry-wt) (g-dry-wt) (g-dry-wt) (gdry-wt)

5 5.06 1.9 1.1 0.62
10 99.8 0.53 0.60 0.71
15 570 0.26 0.45 0.80
20 1970 0.16 0.37 0.88
25 5130 0.11 0.31 0.95
30 11200 0.076 0.27 1.0

The ratio of optimum prey weight to herring weight is put to exp (—8) or 0.034 %
in the Andersen & Ursin (1977) study. This value is low compared to the prefer
ence ratios obtained in Table 4 for larval herring. Two factors may cause this dis
crepancy the first of which is that although the preference ratios obtained in Table
4 represent virtually ali geometrical shapes of prey (i.e. 2 q 4) they stil! only
re!ate to the attack process for one type of particular feeding. Secondly, Andersen
& Ursin (op. cit.) do not distinguish between different life-history stages in rela
tion to prey size preference. The weight preference of 0.034 % is adopted as a sort
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of average value for the juvenile and adult stages and then applied to the early life
history stages as weil.

The work of Andersen & Ursin (1977) shows the important role a theory ofprey
size preference occupies in providing a consistent description of predatory species
interaction in the marine ecosystem. At any point of time the food available for a
size ciass of predators is obtained by Andersen & Ursin (1977) as a weighted
product-sum of preference index and abundance of ali suitable prey categories
occupying the same habitat as the predators. The ecosystem predation pattern thus
changes as time elapses because the abundance of animals changes due to preda
tion and other causes of mortality. But the rules of ‘who wants to eat whom’ is
determined by the index of prey size preference of the predator. Andersen & Ursin
(op. cit.) assume symmetrical preference curve on a logarithmic weight scale, e.g.
a prey of half the optimum weight and a prey of twice the optimum weight are
considered equally attractive by the predator. This model of prey size preference
appears to provide a fair description of avaiiable field data (Ursin, 1973, Andersen
& Ursin, op. cit.).

In the field, however, it is difficult or expensive to provide data on prey size
characteristics both for the food avaiiable and the resulting stomach content of the
predators. Theories of prey preferences are probabiy more iikeiy to be deveioped
and tested under controlled iaboratory conditions because each characteristic of
prey may be isoiated as a variable. The present study of feeding success represents
a step in this direction.
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